Do you want to publish a course? Click here

Robust Vector Perturbation Precoding Design for MIMO Broadcast Channel

81   0   0.0 ( 0 )
 Added by Liutong Du
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We consider the vector perturbation (VP) precoder design for multiuser multiple-input single output (MU-MISO) broadcast channel systems which is robust to power scaling factor errors. VP precoding has so far been developed and analyzed under the assumption that receivers could have known the power scaling factor in advance of tranmission perfectly, which is hard to obtain due to the large dynamic range and limited feedforward. However, as demonstrated in our results the performance of VP precoding is quite sensitive to the accuracy of power scaling factor and always encounter an error floor at mid to high signal-to-noise ratio (SNR) regimes. Motivated by such observations, we propose a robust VP precoder based on the minimum mean square error (MMSE) criterion. Simulation results show that, the robust VP precoder outperforms conventional VP precoding designs, as less sensitive to power scaling factor errors.



rate research

Read More

Recently, multi-user multiple input multiple output (MU-MIMO) systems with low-resolution digital-to-analog converters (DACs) has received considerable attention, owing to the capability of dramatically reducing the hardware cost. Besides, it has been shown that the use of low-resolution DACs enable great reduction in power consumption while maintain the performance loss within acceptable margin, under the assumption of perfect knowledge of channel state information (CSI). In this paper, we investigate the precoding problem for the coarsely quantized MU-MIMO system without such an assumption. The channel uncertainties are modeled to be a random matrix with finite second-order statistics. By leveraging a favorable relation between the multi-bit DACs outputs and the single-bit ones, we first reformulate the original complex precoding problem into a nonconvex binary optimization problem. Then, using the S-procedure lemma, the nonconvex problem is recast into a tractable formulation with convex constraints and finally solved by the semidefinite relaxation (SDR) method. Compared with existing representative methods, the proposed precoder is robust to various channel uncertainties and is able to support a MUMIMO system with higher-order modulations, e.g., 16QAM.
Integer-forcing (IF) precoding, also known as downlink IF, is a promising new approach for communication over multiple-input multiple-output (MIMO) broadcast channels. Inspired by the integer-forcing linear receiver for multiple-access channels, it generalizes linear precoding by inducing an effective channel matrix that is approximately integer, rather than approximately identity. Combined with lattice encoding and a pre-inversion of the channel matrix at the transmitter, the scheme has the potential to outperform any linear precoding scheme, despite enjoying similar low complexity. In this paper, a specific IF precoding scheme, called diagonally-scaled exact IF (DIF), is proposed and shown to achieve maximum spatial multiplexing gain. For the special case of two receivers, in the high SNR regime, an optimal choice of parameters is derived analytically, leading to an almost closed-form expression for the achievable sum rate. In particular, it is shown that the gap to the sum capacity is upper bounded by 0.27 bits for any channel realization. For general SNR, a regularized version of DIF (RDIF) is proposed. Numerical results for two receivers under Rayleigh fading show that RDIF can achieve performance superior to optimal linear precoding and very close to the sum capacity.
We propose a novel randomized channel sparsifying hybrid precoding (RCSHP) design to reduce the signaling overhead of channel estimation and the hardware cost and power consumption at the base station (BS), in order to fully harvest benefits of frequency division duplex (FDD) massive multiple-input multiple-output (MIMO) systems. RCSHP allows time-sharing among multiple analog precoders, each serving a compatible user group. The analog precoder is adapted to the channel statistics to properly sparsify the channel for the associated user group, such that the resulting effective channel (product of channel and analog precoder) not only has enough spatial degrees of freedom (DoF) to serve this group of users, but also can be accurately estimated under the limited pilot budget. The digital precoder is adapted to the effective channel based on the duality theory to facilitate the power allocation and exploit the spatial multiplexing gain. We formulate the joint optimization of the time-sharing factors and the associated sets of analog precoders and power allocations as a general utility optimization problem, which considers the impact of effective channel estimation error on the system performance. Then we propose an efficient stochastic successive convex approximation algorithm to provably obtain Karush-Kuhn-Tucker (KKT) points of this problem.
137 - Rang Liu , Hongyu Li , Ming Li 2019
Intelligent reflecting surface (IRS) has emerged as a promising solution to enhance wireless information transmissions by adaptively controlling prorogation environment. Recently, the brand-new concept of utilizing IRS to implement a passive transmitter attracts researchers attention since it potentially realizes low-complexity and hardware-efficient transmitters of multiple-input single/multiple-output (MISO/MIMO) systems. In this paper we investigate the problem of precoder design for a low-resolution IRS-based transmitter to implement multi-user MISO/MIMO wireless communications. Particularly, the IRS modulates information symbols by varying the phases of its reflecting elements and transmits them to $K$ single-antenna or multi-antenna users. We first aim to design the symbol-level precoder for IRS to realize the modulation and minimize the maximum symbol-error-rate (SER) of single-antenna receivers. In order to tackle this NP-hard problem, we first relax the low-resolution phase-shift constraint and solve this problem by Riemannian conjugate gradient (RCG) algorithm. Then, the low-resolution symbol-level precoding vector is obtained by direct quantization. Considering the large quantization error for 1-bit resolution case, the branch-and-bound method is utilized to solve the 1-bit resolution symbol-level precoding vector. For multi-antenna receivers, we propose to iteratively design the symbol-level precoder and combiner by decomposing the original large-scale optimization problem into several sub-problems. Simulation results validate the effectiveness of our proposed algorithms.
92 - Wenyan Ma , Chenhao Qi 2019
In this paper, a framework of beamspace channel estimation in millimeter wave (mmWave) massive MIMO system is proposed. The framework includes the design of hybrid precoding and combining matrix as well as the search method for the largest entry of over-sampled beamspace receiving matrix. Then based on the framework, three channel estimation schemes including identity matrix approximation (IA)-based scheme, scattered zero off-diagonal (SZO)-based scheme and concentrated zero off-diagonal (CZO)-based scheme are proposed. These schemes together with the existing channel estimation schemes are compared in terms of computational complexity, estimation error and total time slots for channel training. Simulation results show that the proposed schemes outperform the existing schemes and can approach the performance of the ideal case. In particular, total time slots for channel training can be substantially reduced.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا