Queue-reactive Hawkes models for the order flow


Abstract in English

In this work we introduce two variants of multivariate Hawkes models with an explicit dependency on various queue sizes aimed at modeling the stochastic time evolution of a limit order book. The models we propose thus integrate the influence of both the current book state and the past order flow. The first variant considers the flow of order arrivals at a specific price level as independent from the other one and describes this flow by adding a Hawkes component to the arrival rates provided by the continuous time Markov Queue Reactive model of Huang et al. Empirical calibration using Level-I order book data from Eurex future assets (Bund and DAX) show that the Hawkes term dramatically improves the pure Queue-Reactive model not only for the description of the order flow properties (as e.g. the statistics of inter-event times) but also with respect to the shape of the queue distributions. The second variant we introduce describes the joint dynamics of all events occurring at best bid and ask sides of some order book during a trading day. This model can be considered as a queue dependent extension of the multivariate Hawkes order-book model of Bacry et al. We provide an explicit way to calibrate this model either with a Maximum-Likelihood method or with a Least-Square approach. Empirical estimation from Bund and DAX level-I order book data allow us to recover the main features of Hawkes interactions uncovered in Bacry et al. but also to unveil their joint dependence on bid and ask queue sizes. We notably find that while the market order or mid-price changes rates can mainly be functions on the volume imbalance this is not the case for the arrival rate of limit or cancel orders. Our findings also allows us to clearly bring to light various features that distinguish small and large tick assets.

Download