Visualized Insights into the Optimization Landscape of Fully Convolutional Networks


Abstract in English

Many image processing tasks involve image-to-image mapping, which can be addressed well by fully convolutional networks (FCN) without any heavy preprocessing. Although empirically designing and training FCNs can achieve satisfactory results, reasons for the improvement in performance are slightly ambiguous. Our study is to make progress in understanding their generalization abilities through visualizing the optimization landscapes. The visualization of objective functions is obtained by choosing a solution and projecting its vicinity onto a 3D space. We compare three FCN-based networks (two existing models and a new proposed in this paper for comparison) on multiple datasets. It has been observed in practice that the connections from the pre-pooled feature maps to the post-upsampled can achieve better results. We investigate the cause and provide experiments to shows that the skip-layer connections in FCN can promote flat optimization landscape, which is well known to generalize better. Additionally, we explore the relationship between the models generalization ability and loss surface under different batch sizes. Results show that large-batch training makes the model converge to sharp minimizers with chaotic vicinities while small-batch method leads the model to flat minimizers with smooth and nearly convex regions. Our work may contribute to insights and analysis for designing and training FCNs.

Download