Do you want to publish a course? Click here

Learning Global Pairwise Interactions with Bayesian Neural Networks

106   0   0.0 ( 0 )
 Added by Tianyu Cui
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Estimating global pairwise interaction effects, i.e., the difference between the joint effect and the sum of marginal effects of two input features, with uncertainty properly quantified, is centrally important in science applications. We propose a non-parametric probabilistic method for detecting interaction effects of unknown form. First, the relationship between the features and the output is modelled using a Bayesian neural network, capable of representing complex interactions and principled uncertainty. Second, interaction effects and their uncertainty are estimated from the trained model. For the second step, we propose an intuitive global interaction measure: Bayesian Group Expected Hessian (GEH), which aggregates information of local interactions as captured by the Hessian. GEH provides a natural trade-off between type I and type II error and, moreover, comes with theoretical guarantees ensuring that the estimated interaction effects and their uncertainty can be improved by training a more accurate BNN. The method empirically outperforms available non-probabilistic alternatives on simulated and real-world data. Finally, we demonstrate its ability to detect interpretable interactions between higher-level features (at deeper layers of the neural network).



rate research

Read More

In recent years we see a rapidly growing line of research which shows learnability of various models via common neural network algorithms. Yet, besides a very few outliers, these results show learnability of models that can be learned using linear methods. Namely, such results show that learning neural-networks with gradient-descent is competitive with learning a linear classifier on top of a data-independent representation of the examples. This leaves much to be desired, as neural networks are far more successful than linear methods. Furthermore, on the more conceptual level, linear models dont seem to capture the deepness of deep networks. In this paper we make a step towards showing leanability of models that are inherently non-linear. We show that under certain distributions, sparse parities are learnable via gradient decent on depth-two network. On the other hand, under the same distributions, these parities cannot be learned efficiently by linear methods.
Variational Bayesian neural networks (BNNs) perform variational inference over weights, but it is difficult to specify meaningful priors and approximate posteriors in a high-dimensional weight space. We introduce functional variational Bayesian neural networks (fBNNs), which maximize an Evidence Lower BOund (ELBO) defined directly on stochastic processes, i.e. distributions over functions. We prove that the KL divergence between stochastic processes equals the supremum of marginal KL divergences over all finite sets of inputs. Based on this, we introduce a practical training objective which approximates the functional ELBO using finite measurement sets and the spectral Stein gradient estimator. With fBNNs, we can specify priors entailing rich structures, including Gaussian processes and implicit stochastic processes. Empirically, we find fBNNs extrapolate well using various structured priors, provide reliable uncertainty estimates, and scale to large datasets.
Bayesian neural network (BNN) priors are defined in parameter space, making it hard to encode prior knowledge expressed in function space. We formulate a prior that incorporates functional constraints about what the output can or cannot be in regions of the input space. Output-Constrained BNNs (OC-BNN) represent an interpretable approach of enforcing a range of constraints, fully consistent with the Bayesian framework and amenable to black-box inference. We demonstrate how OC-BNNs improve model robustness and prevent the prediction of infeasible outputs in two real-world applications of healthcare and robotics.
Modern deep learning methods have equipped researchers and engineers with incredibly powerful tools to tackle problems that previously seemed impossible. However, since deep learning methods operate as black boxes, the uncertainty associated with their predictions is often challenging to quantify. Bayesian statistics offer a formalism to understand and quantify the uncertainty associated with deep neural networks predictions. This paper provides a tutorial for researchers and scientists who are using machine learning, especially deep learning, with an overview of the relevant literature and a complete toolset to design, implement, train, use and evaluate Bayesian neural networks.
While on some natural distributions, neural-networks are trained efficiently using gradient-based algorithms, it is known that learning them is computationally hard in the worst-case. To separate hard from easy to learn distributions, we observe the property of local correlation: correlation between local patterns of the input and the target label. We focus on learning deep neural-networks using a gradient-based algorithm, when the target function is a tree-structured Boolean circuit. We show that in this case, the existence of correlation between the gates of the circuit and the target label determines whether the optimization succeeds or fails. Using this result, we show that neural-networks can learn the (log n)-parity problem for most product distributions. These results hint that local correlation may play an important role in separating easy/hard to learn distributions. We also obtain a novel depth separation result, in which we show that a shallow network cannot express some functions, while there exists an efficient gradient-based algorithm that can learn the very same functions using a deep network. The negative expressivity result for shallow networks is obtained by a reduction from results in communication complexity, that may be of independent interest.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا