No Arabic abstract
Convolutional Neural Networks (CNNs) are widely used to solve classification tasks in computer vision. However, they can be tricked into misclassifying specially crafted `adversarial samples -- and samples built to trick one model often work alarmingly well against other models trained on the same task. In this paper we introduce Sitatapatra, a system designed to block the transfer of adversarial samples. It diversifies neural networks using a key, as in cryptography, and provides a mechanism for detecting attacks. Whats more, when adversarial samples are detected they can typically be traced back to the individual device that was used to develop them. The run-time overheads are minimal permitting the use of Sitatapatra on constrained systems.
Mitigating the risk arising from extreme events is a fundamental goal with many applications, such as the modelling of natural disasters, financial crashes, epidemics, and many others. To manage this risk, a vital step is to be able to understand or generate a wide range of extreme scenarios. Existing approaches based on Generative Adversarial Networks (GANs) excel at generating realistic samples, but seek to generate typical samples, rather than extreme samples. Hence, in this work, we propose ExGAN, a GAN-based approach to generate realistic and extreme samples. To model the extremes of the training distribution in a principled way, our work draws from Extreme Value Theory (EVT), a probabilistic approach for modelling the extreme tails of distributions. For practical utility, our framework allows the user to specify both the desired extremeness measure, as well as the desired extremeness probability they wish to sample at. Experiments on real US Precipitation data show that our method generates realistic samples, based on visual inspection and quantitative measures, in an efficient manner. Moreover, generating increasingly extreme examples using ExGAN can be done in constant time (with respect to the extremeness probability $tau$), as opposed to the $mathcal{O}(frac{1}{tau})$ time required by the baseline approach.
Recent researches have suggested that the predictive accuracy of neural network may contend with its adversarial robustness. This presents challenges in designing effective regularization schemes that also provide strong adversarial robustness. Revisiting Vicinal Risk Minimization (VRM) as a unifying regularization principle, we propose Adversarial Labelling of Perturbed Samples (ALPS) as a regularization scheme that aims at improving the generalization ability and adversarial robustness of the trained model. ALPS trains neural networks with synthetic samples formed by perturbing each authentic input sample towards another one along with an adversarially assigned label. The ALPS regularization objective is formulated as a min-max problem, in which the outer problem is minimizing an upper-bound of the VRM loss, and the inner problem is L$_1$-ball constrained adversarial labelling on perturbed sample. The analytic solution to the induced inner maximization problem is elegantly derived, which enables computational efficiency. Experiments on the SVHN, CIFAR-10, CIFAR-100 and Tiny-ImageNet datasets show that the ALPS has a state-of-the-art regularization performance while also serving as an effective adversarial training scheme.
Many recent works on knowledge distillation have provided ways to transfer the knowledge of a trained network for improving the learning process of a new one, but finding a good technique for knowledge distillation is still an open problem. In this paper, we provide a new perspective based on a decision boundary, which is one of the most important component of a classifier. The generalization performance of a classifier is closely related to the adequacy of its decision boundary, so a good classifier bears a good decision boundary. Therefore, transferring information closely related to the decision boundary can be a good attempt for knowledge distillation. To realize this goal, we utilize an adversarial attack to discover samples supporting a decision boundary. Based on this idea, to transfer more accurate information about the decision boundary, the proposed algorithm trains a student classifier based on the adversarial samples supporting the decision boundary. Experiments show that the proposed method indeed improves knowledge distillation and achieves the state-of-the-arts performance.
The vulnerabilities of deep neural networks against adversarial examples have become a significant concern for deploying these models in sensitive domains. Devising a definitive defense against such attacks is proven to be challenging, and the methods relying on detecting adversarial samples are only valid when the attacker is oblivious to the detection mechanism. In this paper we first present an adversarial example detection method that provides performance guarantee to norm constrained adversaries. The method is based on the idea of training adversarial robust subspace detectors using asymmetrical adversarial training (AAT). The novel AAT objective presents a minimax problem similar to that of GANs; it has the same convergence property, and consequently supports the learning of class conditional distributions. We first demonstrate that the minimax problem could be reasonably solved by PGD attack, and then use the learned class conditional generative models to define generative detection/classification models that are both robust and more interpretable. We provide comprehensive evaluations of the above methods, and demonstrate their competitive performances and compelling properties on adversarial detection and robust classification problems.
Adversarial examples have become one of the largest challenges that machine learning models, especially neural network classifiers, face. These adversarial examples break the assumption of attack-free scenario and fool state-of-the-art (SOTA) classifiers with insignificant perturbations to human. So far, researchers achieved great progress in utilizing adversarial training as a defense. However, the overwhelming computational cost degrades its applicability and little has been done to overcome this issue. Single-Step adversarial training methods have been proposed as computationally viable solutions, however they still fail to defend against iterative adversarial examples. In this work, we first experimentally analyze several different SOTA defense methods against adversarial examples. Then, based on observations from experiments, we propose a novel single-step adversarial training method which can defend against both single-step and iterative adversarial examples. Lastly, through extensive evaluations, we demonstrate that our proposed method outperforms the SOTA single-step and iterative adversarial training defense. Compared with ATDA (single-step method) on CIFAR10 dataset, our proposed method achieves 35.67% enhancement in test accuracy and 19.14% reduction in training time. When compared with methods that use BIM or Madry examples (iterative methods) on CIFAR10 dataset, it saves up to 76.03% in training time with less than 3.78% degeneration in test accuracy.