Shielding Property in Higher Dimensions


Abstract in English

When the reduced state of a many-body quantum system is independent of its remaining parts, we say it shows what has become known by shielding property. Under some assumptions, equilibrium states of quantum transverse Ising models do manifest such phenomenon. Namely, imagine a many-body quantum system described by a lattice in the presence of an external magnetic field. Suppose there exists a separating interface on this lattice splitting the system into two subsets such that they only interact one another through that interface. In addition, suppose also that the applied external magnetic field is null on the interface. The shielding property states that the reduced state of the set in one side of the interface has no dependence on the Hamiltonian parameters of the set in the other side. This statement was proved in [N. Moller et al, PRE 97, 032101 (2018)] for the case where there is only one site in the interface. For lattices with more sites in the interface, it was conjectured that the shielding property is true when the system is in the ground state. For the case of positive temperatures, it does not hold and there are counterexamples to show that. Here we show that the conjecture does hold true for ground states, but under an additional condition. This condition is met, in particular, if the Hamiltonian terms associated to the interface are frustration-free.

Download