Placement delivery arrays for distributed computing (Comp-PDAs) have recently been proposed as a framework to construct universal computing schemes for MapReduce-like systems. In this work, we extend this concept to systems with straggling nodes, i.e., to systems where a subset of the nodes cannot accomplish the assigned map computations in due time. Unlike most previous works that focused on computing linear functions, our results are universal and apply for arbitrary map and reduce functions. Our contributions are as follows. Firstly, we show how to construct a universal coded computing scheme for MapReduce-like systems with straggling nodes from any given Comp-PDA. We also characterize the storage and communication loads of the resulting scheme in terms of the Comp-PDA parameters. Then, we prove an information-theoretic converse bound on the storage-communication (SC) tradeoff achieved by universal computing schemes with straggling nodes. We show that the information-theoretic bound matches the performance achieved by the coded computing schemes with straggling nodes corresponding to the Maddah-Ali and Niesen (MAN) PDAs, i.e., to the Comp-PDAs describing Maddah-Ali and Niesens coded caching scheme. Interestingly, the same Comp-PDAs (the MAN-PDAs) are optimal for any number of straggling nodes, which implies that the map phase of optimal coded computing schemes does not need to be adapted to the number of stragglers in the system. We finally prove that while the points that lie exactly on the fundamental SC tradeoff cannot be achieved with Comp-PDAs that require smaller number of files than the MAN-PDAs, this is possible for some of the points that lie close to the SC tradeoff. For these latter points, the decrease in the requested number of files can be exponential in the number of nodes of the system.