Do you want to publish a course? Click here

Analysis of FEAST spectral approximations using the DPG discretization

64   0   0.0 ( 0 )
 Added by Benjamin Parker
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

A filtered subspace iteration for computing a cluster of eigenvalues and its accompanying eigenspace, known as FEAST, has gained considerable attention in recent years. This work studies issues that arise when FEAST is applied to compute part of the spectrum of an unbounded partial differential operator. Specifically, when the resolvent of the partial differential operator is approximated by the discontinuous Petrov Galerkin (DPG) method, it is shown that there is no spectral pollution. The theory also provides bounds on the discretization errors in the spectral approximations. Numerical experiments for simple operators illustrate the theory and also indicate the value of the algorithm beyond the confines of the theoretical assumptions. The utility of the algorithm is illustrated by applying it to compute guided transverse core modes of a realistic optical fiber.



rate research

Read More

We introduce a cousin of the DPG method - the DPG* method - discuss their relationship and compare the two methods through numerical experiments.
This article introduces the DPG-star (from now on, denoted DPG$^*$) finite element method. It is a method that is in some sense dual to the discontinuous Petrov-Galerkin (DPG) method. The DPG methodology can be viewed as a means to solve an overdetermined discretization of a boundary value problem. In the same vein, the DPG$^*$ methodology is a means to solve an underdetermined discretization. These two viewpoints are developed by embedding the same operator equation into two different saddle-point problems. The analyses of the two problems have many common elements. Comparison to other methods in the literature round out the newly garnered perspective. Notably, DPG$^*$ and DPG methods can be seen as generalizations of $mathcal{L}mathcal{L}^ast$ and least-squares methods, respectively. A priori error analysis and a posteriori error control for the DPG$^*$ method are considered in detail. Reports of several numerical experiments are provided which demonstrate the essential features of the new method. A notable difference between the results from the DPG$^*$ and DPG analyses is that the convergence rates of the former are limited by the regularity of an extraneous Lagrange multiplier variable.
We consider semi-discrete discontinuous Galerkin approximations of a general elastodynamics problem, in both {it displacement} and {it displacement-stress} formulations. We present the stability analysis of all the methods in the natural energy norm and derive optimal a-priori error estimates. For the displacement-stress formulation, schemes preserving the total energy of the system are introduced and discussed. We include some numerical experiments in three dimensions to verify the theory.
We propose and analyze a discretization scheme that combines the discontinuous Petrov-Galerkin and finite element methods. The underlying model problem is of general diffusion-advection-reaction type on bounded domains, with decomposition into two sub-domains. We propose a heterogeneous variational formulation that is of the ultra-weak (Petrov-Galerkin) form with broken test space in one part, and of Bubnov-Galerkin form in the other. A standard discretization with conforming approximation spaces and appropriate test spaces (optimal test functions for the ultra-weak part and standard test functions for the Bubnov-Galerkin part) gives rise to a coupled DPG-FEM scheme. We prove its well-posedness and quasi-optimal convergence. Numerical results confirm expected convergence orders.
110 - Dmitry Pavlov 2015
The main objective of this paper is to develop a general method of geometric discretization for infinite-dimensional systems and apply this method to the EPDiff equation. The method described below extends one developed by Pavlov et al. for incompressible Euler fluids. Here this method is presented in a general case applicable to all, not only divergence-free, vector fields. Also, a different (pseudospectral) representation of the velocity field is used. We will apply this method to the one-dimensional EPDiff equation and present numerical results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا