Do you want to publish a course? Click here

Economically Efficient Combined Plant and Controller Design Using Batch Bayesian Optimization: Mathematical Framework and Airborne Wind Energy Case Study

62   0   0.0 ( 0 )
 Added by Ali Baheri
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We present a novel data-driven nested optimization framework that addresses the problem of coupling between plant and controller optimization. This optimization strategy is tailored towards instances where a closed-form expression for the system dynamic response is unobtainable and simulations or experiments are necessary. Specifically, Bayesian Optimization, which is a data-driven technique for finding the optimum of an unknown and expensive-to-evaluate objective function, is employed to solve a nested optimization problem. The underlying objective function is modeled by a Gaussian Process (GP); then, Bayesian Optimization utilizes the predictive uncertainty information from the GP to determine the best subsequent control or plant parameters. The proposed framework differs from the majority of co-design literature where there exists a closed-form model of the system dynamics. Furthermore, we utilize the idea of Batch Bayesian Optimization at the plant optimization level to generate a set of plant designs at each iteration of the overall optimization process, recognizing that there will exist economies of scale in running multiple experiments in each iteration of the plant design process. We validate the proposed framework for a Buoyant Airborne Turbine (BAT). We choose the horizontal stabilizer area, longitudinal center of mass relative to center of buoyancy (plant parameters), and the pitch angle set-point (controller parameter) as our decision variables. Our results demonstrate that these plant and control parameters converge to their respective optimal values within only a few iterations.



rate research

Read More

We present a data-driven optimization framework that aims to address online adaptation of the flight path shape for an airborne wind energy system (AWE) that follows a repetitive path to generate power. Specifically, Bayesian optimization, which is a data-driven algorithm for finding the optimum of an unknown objective function, is utilized to solve the waypoint adaptation. To form a computationally efficient optimization framework, we describe each figure-$8$ flight via a compact set of parameters, termed as basis parameters. We model the underlying objective function by a Gaussian Process (GP). Bayesian optimization utilizes the predictive uncertainty information from the GP to determine the best subsequent basis parameters. Once a path is generated using Bayesian optimization, a path following mechanism is used to track the generated figure-$8$ flight. The proposed framework is validated on a simplified $2$-dimensional model that mimics the key behaviors of a $3$-dimensional AWE system. We demonstrate the capability of the proposed framework in a simulation environment for a simplified $2$-dimensional AWE system model.
In this paper we present AWEsome (Airborne Wind Energy Standardized Open-source Model Environment), a test platform for airborne wind energy systems that consists of low-cost hardware and is entirely based on open-source software. It can hence be used without the need of large financial investments, in particular by research groups and startups to acquire first experiences in their flight operations, to test novel control strategies or technical designs, or for usage in public relations. Our system consists of a modified off-the-shelf model aircraft that is controlled by the pixhawk autopilot hardware and the ardupilot software for fixed wing aircraft. The aircraft is attached to the ground by a tether. We have implemented new flight modes for the autonomous tethered flight of the aircraft along periodic patterns. We present the principal functionality of our algorithms. We report on first successful tests of these modes in real flights.
This case study presents an analysis and quantification of the impact of the lack of co-optimization of energy and reserve in the presence of high penetration of wind energy. The methodology is developed in a companion paper, Part I. Two models, with and without co-optimization are confronted. The modeling of reserve and the incentive to renewable as well as the calibration of the model are inspired by the Spanish market. A sensitivity analysis is performed on configurations that differ by generation capacity, ramping capability, and market parameters (available wind, Feed in Premium to wind, generators risk aversion, and reserve requirement). The models and the case study are purely illustrative but the methodology is general.
We present two algorithms for Bayesian optimization in the batch feedback setting, based on Gaussian process upper confidence bound and Thompson sampling approaches, along with frequentist regret guarantees and numerical results.
We compare the available wind resources for conventional wind turbines and for airborne wind energy systems. Accessing higher altitudes and dynamically adjusting the harvesting operation to the wind resource substantially increases the potential energy yield. The study is based on the ERA5 reanalysis data which covers a period of 7 years with hourly estimates at a surface resolution of 31 x 31 km and a vertical resolution of 137 barometric altitude levels. We present detailed wind statistics for a location in the English Channel and then expand the analysis to a surface grid of Western and Central Europe with a resolution of 110 x 110 km. Over the land mass and coastal areas of Europe we find that compared to a fixed harvesting altitude at the approximate hub height of wind turbines, the energy yield which is available for 95% of the time increases by a factor of two.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا