Do you want to publish a course? Click here

Multiwavelength campaign on Mrk 509. XVI. Continued HST/COS monitoring of the far-ultraviolet spectrum

117   0   0.0 ( 0 )
 Added by Gerard A. Kriss
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

To elucidate the location, physical conditions, mass outflow rate, and kinetic luminosity of the outflow from the active nucleus of the Seyfert 1 galaxy Mrk 509 we used coordinated ultraviolet and X-ray spectral observations in 2012 to follow up our lengthier campaign conducted in 2009. We observed Mrk 509 with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST) on 2012-09-03 and 2012-10-11 coordinated with X-ray observations using the High Energy Transmission Grating on the Chandra X-ray Observatory. Our far-ultraviolet spectra used grating G140L on COS to cover wavelengths from 920--2000 AA at a resolving power of $sim2000$, and gratings G130M and G160M to cover 1160--1750 AA at a resolving power of $sim15,000$. We detect variability in the blue-shifted UV absorption lines on timescales spanning 3--12 years. The inferred densities in the absorbing gas are greater than log $n rm~cm^{-3} sim 3$. For ionization parameters ranging over log $U = -1.5 rm~to~-0.2$, we constrain the distances of the absorbers to be closer than 220 pc to the active nucleus. The impact on the host galaxy appears to be confined to the nuclear region.



rate research

Read More

96 - G. A. Kriss 2011
We present medium resolution (R~20,000) HST/COS ultraviolet spectra covering 1155-1760 A of the Seyfert 1 Mrk 509 obtained simultaneously with a Chandra/LETGS spectrum as part of a multiwavelength campaign in 2009 that included observations with XMM-Newton, SWIFT, and Integral. Our high S/N spectrum detects additional complexity in the absorption troughs from a variety of sources in Mrk 509, including the outflow from the active nucleus, the ISM and halo of the host galaxy, and infalling clouds or stripped gas from a merger that are illuminated by the AGN. Variability between the STIS and COS observation of the -400 km/s component allows us to set an upper limit on its distance of < 250 pc. Similarly, variability of a component at +150 km/s between two prior FUSE observations limits its distance to < 1.5 kpc. The UV absorption only partially covers the emission from the AGN nucleus. Covering fractions are lower than those previously seen with STIS, and are comparable to those seen with FUSE. Given the larger apertures of COS and FUSE compared to STIS, we favor scattered light from an extended region near the AGN as the explanation for the partial covering. As observed in prior X-ray and UV spectra, the UV absorption has velocities comparable to the X-ray absorption, but the bulk of the ultraviolet absorption is in a lower ionization state with lower total column density than the gas responsible for the X-ray absorption. We conclude that the outflow from the active nucleus is a multiphase wind.
117 - N. Arav , D. Edmonds , B. Borguet 2012
Active Galactic Nuclei often show evidence of photoionized outflows. A major uncertainty in models for these outflows is the distance ($R$) to the gas from the central black hole. In this paper we use the HST/COS data from a massive multi-wavelength monitoring campaign on the bright Seyfert I galaxy Mrk 509, in combination with archival HST/STIS data, to constrain the location of the various kinematic components of the outflow. We compare the expected response of the photoionized gas to changes in ionizing flux with the changes measured in the data using the following steps: 1) We compare the column densities of each kinematic component measured in the 2001 STIS data with those measured in the 2009 COS data; 2) We use time-dependent photionization calculations with a set of simulated lightcurves to put statistical upper limits on the hydrogen number density that are consistent with the observed small changes in the ionic column densities; 3) From the upper limit on the number density, we calculate a lower limit on the distance to the absorber from the central source via the prior determination of the ionization parameter. Our method offers two improvements on traditional timescale analysis. First, we account for the physical behavior of AGN lightcurves. Second, our analysis accounts for the quality of measurement in cases where no changes are observed in the absorption troughs. The very small variations in trough ionic column densities (mostly consistent with no change) between the 2001 and 2009 epochs allow us to put statistical lower limits on the distance between 100--200 pc for all the major UV absorption components at a confidence level of 99%. These results are mainly consistent with the independent distance estimates derived for the warm absorbers from the simultaneous X-ray spectra.
218 - J.S. Kaastra , J. Ebrero , N. Arav 2014
We present in this paper the results of a 270 ks Chandra HETGS observation in the context of a large multiwavelength campaign on the Seyfert galaxy Mrk 509. The HETGS spectrum allows us to study the high ionisation warm absorber and the Fe-K complex in Mrk 509. We search for variability in the spectral properties of the source with respect to previous observations in this campaign, as well as for evidence of ultra-fast outflow signatures. The Chandra HETGS X-ray spectrum of Mrk 509 was analysed using the SPEX fitting package. We confirm the basic structure of the warm absorber found in the 600 ks XMM-Newton RGS observation observed three years earlier, consisting of five distinct ionisation components in a multikinematic regime. We find little or no variability in the physical properties of the different warm absorber phases with respect to previous observations in this campaign, except for component D2 which has a higher column density at the expense of component C2 at the same outflow velocity (-240 km/s). Contrary to prior reports we find no -700 km/s outflow component. The O VIII absorption line profiles show an average covering factor of 0.81 +/- 0.08 for outflow velocities faster than -100 km/s, similar to those measured in the UV. This supports the idea of a patchy wind. The relative metal abundances in the outflow are close to proto-solar. The narrow component of the Fe Kalpha emission line shows no changes with respect to previous observations which confirms its origin in distant matter. The narrow line has a red wing that can be interpreted to be a weak relativistic emission line. We find no significant evidence of ultra-fast outflows in our new spectrum down to the sensitivity limit of our data.
We report on a detailed study of the Fe K emission/absorption complex in the nearby, bright Seyfert 1 galaxy Mrk 509. The study is part of an extensive XMM-Newton monitoring consisting of 10 pointings (~60 ks each) about once every four days, and includes also a reanalysis of previous XMM-Newton and Chandra observations. Mrk 509 shows a clear (EW=58 eV) neutral Fe Kalpha emission line that can be decomposed into a narrow (sigma=0.027 keV) component (found in the Chandra HETG data) plus a resolved (sigma=0.22 keV) component. We find the first successful measurement of a linear correlation between the intensity of the resolved line component and the 3-10 keV flux variations on time-scales of years down to a few days. The Fe Kalpha reverberates the hard X-ray continuum without any measurable lag, suggesting that the region producing the resolved Fe Kalpha component is located within a few light days-week (r<~10^3 rg) from the Black Hole (BH). The lack of a redshifted wing in the line poses a lower limit of >40 rg for its distance from the BH. The Fe Kalpha could thus be emitted from the inner regions of the BLR, i.e. within the ~80 light days indicated by the Hbeta line measurements. In addition to these two neutral Fe Kalpha components, we confirm the detection of weak (EW~8-20 eV) ionised Fe K emission. This ionised line can be modeled with either a blend of two narrow FeXXV and FeXXVI emission lines or with a single relativistic line produced, in an ionised disc, down to a few rg from the BH. Finally, we observe a weakening/disappearing of the medium and high velocity high ionisation Fe K wind features found in previous XMM-Newton observations. This campaign has made possible the first reverberation measurement of the resolved component of the Fe Kalpha line, from which we can infer a location for the bulk of its emission at a distance of r~40-1000 rg from the BH.
(Abridged) The simultaneous UV to X-rays/gamma rays data obtained during the multi-wavelength XMM/INTEGRAL campaign on the Seyfert 1 Mrk 509 are used in this paper and tested against physically motivated broad band models. Each observation has been fitted with a realistic thermal comptonisation model for the continuum emission. Prompted by the correlation between the UV and soft X-ray flux, we use a thermal comptonisation component for the soft X-ray excess. The UV to X-rays/gamma-rays emission of Mrk 509 can be well fitted by these components. The presence of a relatively hard high-energy spectrum points to the existence of a hot (kT~100 keV), optically-thin (tau~0.5) corona producing the primary continuum. On the contrary, the soft X-ray component requires a warm (kT~1 keV), optically-thick (tau~15) plasma. Estimates of the amplification ratio for this warm plasma support a configuration close to the theoretical configuration of a slab corona above a passive disk. An interesting consequence is the weak luminosity-dependence of its emission, a possible explanation of the roughly constant spectral shape of the soft X-ray excess seen in AGNs. The temperature (~ 3 eV) and flux of the soft-photon field entering and cooling the warm plasma suggests that it covers the accretion disk down to a transition radius $R_{tr}$ of 10-20 $R_g$. This plasma could be the warm upper layer of the accretion disk. On the contrary the hot corona has a more photon-starved geometry. The high temperature ($sim$ 100 eV) of the soft-photon field entering and cooling it favors a localization of the hot corona in the inner flow. This soft-photon field could be part of the comptonised emission produced by the warm plasma. In this framework, the change in the geometry (i.e. $R_{tr}$) could explain most of the observed flux and spectral variability.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا