Do you want to publish a course? Click here

A Novel Microdata Privacy Disclosure Risk Measure

47   0   0.0 ( 0 )
 Added by Marmar Orooji
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

A tremendous amount of individual-level data is generated each day, of use to marketing, decision makers, and machine learning applications. This data often contain private and sensitive information about individuals, which can be disclosed by adversaries. An adversary can recognize the underlying individuals identity for a data record by looking at the values of quasi-identifier attributes, known as identity disclosure, or can uncover sensitive information about an individual through attribute disclosure. In Statistical Disclosure Control, multiple disclosure risk measures have been proposed. These share two drawbacks: they do not consider identity and attribute disclosure concurrently in the risk measure, and they make restrictive assumptions on an adversarys knowledge by assuming certain attributes are quasi-identifiers and there is a clear boundary between quasi-identifiers and sensitive information. In this paper, we present a novel disclosure risk measure that addresses these limitations, by presenting a single combined metric of identity and attribute disclosure risk, and providing flexibility in modeling adversarys knowledge. We have developed an efficient algorithm for computing the proposed risk measure and evaluated the feasibility and performance of our approach on a real-world data set from the domain of social work.



rate research

Read More

The calibration of noise for a privacy-preserving mechanism depends on the sensitivity of the query and the prescribed privacy level. A data steward must make the non-trivial choice of a privacy level that balances the requirements of users and the monetary constraints of the business entity. We analyse roles of the sources of randomness, namely the explicit randomness induced by the noise distribution and the implicit randomness induced by the data-generation distribution, that are involved in the design of a privacy-preserving mechanism. The finer analysis enables us to provide stronger privacy guarantees with quantifiable risks. Thus, we propose privacy at risk that is a probabilistic calibration of privacy-preserving mechanisms. We provide a composition theorem that leverages privacy at risk. We instantiate the probabilistic calibration for the Laplace mechanism by providing analytical results. We also propose a cost model that bridges the gap between the privacy level and the compensation budget estimated by a GDPR compliant business entity. The convexity of the proposed cost model leads to a unique fine-tuning of privacy level that minimises the compensation budget. We show its effectiveness by illustrating a realistic scenario that avoids overestimation of the compensation budget by using privacy at risk for the Laplace mechanism. We quantitatively show that composition using the cost optimal privacy at risk provides stronger privacy guarantee than the classical advanced composition.
Governments and researchers around the world are implementing digital contact tracing solutions to stem the spread of infectious disease, namely COVID-19. Many of these solutions threaten individual rights and privacy. Our goal is to break past the false dichotomy of effective versus privacy-preserving contact tracing. We offer an alternative approach to assess and communicate users risk of exposure to an infectious disease while preserving individual privacy. Our proposal uses recent GPS location histories, which are transformed and encrypted, and a private set intersection protocol to interface with a semi-trusted authority. There have been other recent proposals for privacy-preserving contact tracing, based on Bluetooth and decentralization, that could further eliminate the need for trust in authority. However, solutions with Bluetooth are currently limited to certain devices and contexts while decentralization adds complexity. The goal of this work is two-fold: we aim to propose a location-based system that is more privacy-preserving than what is currently being adopted by governments around the world, and that is also practical to implement with the immediacy needed to stem a viral outbreak.
In collaborative privacy preserving planning (CPPP), a group of agents jointly creates a plan to achieve a set of goals while preserving each others privacy. During planning, agents often reveal the private dependencies between their public actions to other agents, that is, which public action facilitates the preconditions of another public action. Previous work in CPPP does not limit the disclosure of such dependencies. In this paper, we explicitly limit the amount of disclosed dependencies, allowing agents to publish only a part of their private dependencies. We investigate different strategies for deciding which dependencies to publish, and how they affect the ability to find solutions. We evaluate the ability of two solvers -- distribute forward search and centralized planning based on a single-agent projection -- to produce plans under this constraint. Experiments over standard CPPP domains show that the proposed dependency-sharing strategies enable generating plans while sharing only a small fraction of all private dependencies.
Over the past six years, deep generative models have achieved a qualitatively new level of performance. Generated data has become difficult, if not impossible, to be distinguished from real data. While there are plenty of use cases that benefit from this technology, there are also strong concerns on how this new technology can be misused to spoof sensors, generate deep fakes, and enable misinformation at scale. Unfortunately, current deep fake detection methods are not sustainable, as the gap between real and fake continues to close. In contrast, our work enables a responsible disclosure of such state-of-the-art generative models, that allows researchers and companies to fingerprint their models, so that the generated samples containing a fingerprint can be accurately detected and attributed to a source. Our technique achieves this by an efficient and scalable ad-hoc generation of a large population of models with distinct fingerprints. Our recommended operation point uses a 128-bit fingerprint which in principle results in more than $10^{36}$ identifiable models. Experiments show that our method fulfills key properties of a fingerprinting mechanism and achieves effectiveness in deep fake detection and attribution.
Recently, the membership inference attack poses a serious threat to the privacy of confidential training data of machine learning models. This paper proposes a novel adversarial example based privacy-preserving technique (AEPPT), which adds the crafted adversarial perturbations to the prediction of the target model to mislead the adversarys membership inference model. The added adversarial perturbations do not affect the accuracy of target model, but can prevent the adversary from inferring whether a specific data is in the training set of the target model. Since AEPPT only modifies the original output of the target model, the proposed method is general and does not require modifying or retraining the target model. Experimental results show that the proposed method can reduce the inference accuracy and precision of the membership inference model to 50%, which is close to a random guess. Further, for those adaptive attacks where the adversary knows the defense mechanism, the proposed AEPPT is also demonstrated to be effective. Compared with the state-of-the-art defense methods, the proposed defense can significantly degrade the accuracy and precision of membership inference attacks to 50% (i.e., the same as a random guess) while the performance and utility of the target model will not be affected.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا