Do you want to publish a course? Click here

Interplay between Magnetic and Vestigial Nematic Orders in the Layered $J_1$-$J_2$ Classical Heisenberg Model

195   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the layered $J_1$-$J_2$ classical Heisenberg model on the square lattice using a self-consistent bond theory. We derive the phase diagram for fixed $J_1$ as a function of temperature $T$, $J_2$ and interplane coupling $J_z$. Broad regions of (anti)ferromagnetic and stripe order are found, and are separated by a first-order transition near $J_2approx 0.5$ (in units of $|J_1|$). Within the stripe phase the magnetic and vestigial nematic transitions occur simultaneously in first-order fashion for strong $J_z$. For weaker $J_z$ there is in addition, for $J_2^*<J_2 < J_2^{**}$, an intermediate regime of split transitions implying a finite temperature region with nematic order but no long-range stripe magnetic order. In this split regime, the order of the transitions depends sensitively on the deviation from $J_2^*$ and $J_2^{**}$, with split second-order transitions predominating for $J_2^* ll J_2 ll J_2^{**}$. We find that the value of $J_2^*$ depends weakly on the interplane coupling and is just slightly larger than $0.5$ for $|J_z| lesssim 0.01$. In contrast the value of $J_2^{**}$ increases quickly from $J_2^*$ at $|J_z| lesssim 0.01$ as the interplane coupling is further reduced. In addition, the magnetic correlation length is shown to directly depend on the nematic order parameter and thus exhibits a sharp increase (or jump) upon entering the nematic phase. Our results are broadly consistent with predictions based on itinerant electron models of the iron-based superconductors in the normal-state, and thus help substantiate a classical spin framework for providing a phenomenological description of their magnetic properties.



rate research

Read More

The large $J_2$ limit of the square-lattice $J_1-J_2$ Heisenberg antiferromagnet is a classic example of order by disorder where quantum fluctuations select a collinear ground state. Here, we use series expansion methods and a meanfield spin-wave theory to study the excitation spectra in this phase and look for a finite temperature Ising-like transition, corresponding to a broken symmetry of the square-lattice, as first proposed by Chandra et al. (Phys. Rev. Lett. 64, 88 (1990)). We find that the spectra reveal the symmetries of the ordered phase. However, we do not find any evidence for a finite temperature phase transition. Based on an effective field theory we argue that the Ising-like transition occurs only at zero temperature.
We use the state-of-the-art tensor network state method, specifically, the finite projected entangled pair state (PEPS) algorithm, to simulate the global phase diagram of spin-$1/2$ $J_1$-$J_2$ Heisenberg model on square lattices up to $24times 24$. We provide very solid evidences to show that the nature of the intermediate nonmagnetic phase is a gapless quantum spin liquid (QSL), whose spin-spin and dimer-dimer correlations both decay with a power law behavior. There also exists a valence-bond solid (VBS) phase in a very narrow region $0.56lesssim J_2/J_1leq0.61$ before the system enters the well known collinear antiferromagnetic phase. We stress that our work gives rise to the first solid PEPS results beyond the well established density matrix renormalization group (DMRG) through one-to-one direct benchmark for small system sizes. Thus our numerical evidences explicitly demonstrate the huge power of PEPS for solving long-standing 2D quantum many-body problems. The physical nature of the discovered gapless QSL and potential experimental implications are also addressed.
We investigate the magnetic properties of LiYbO$_2$, containing a three-dimensionally frustrated, diamond-like lattice via neutron scattering, magnetization, and heat capacity measurements. The stretched diamond network of Yb$^{3+}$ ions in LiYbO$_2$ enters a long-range incommensurate, helical state with an ordering wave vector ${bf{k}} = (0.384, pm 0.384, 0)$ that locks-in to a commensurate ${bf{k}} = (1/3, pm 1/3, 0)$ phase under the application of a magnetic field. The spiral magnetic ground state of LiYbO$_2$ can be understood in the framework of a Heisenberg $J_1-J_2$ Hamiltonian on a stretched diamond lattice, where the propagation vector of the spiral is uniquely determined by the ratio of $J_2/|J_1|$. The pure Heisenberg model, however, fails to account for the relative phasing between the Yb moments on the two sites of the bipartite lattice, and this detail as well as the presence of an intermediate, partially disordered, magnetic state below 1 K suggests interactions beyond the classical Heisenberg description of this material.
We study the quantum phase diagram and excitation spectrum of the frustrated $J_1$-$J_2$ spin-1/2 Heisenberg Hamiltonian. A hierarchical mean-field approach, at the heart of which lies the idea of identifying {it relevant} degrees of freedom, is developed. Thus, by performing educated, manifestly symmetry preserving mean-field approximations, we unveil fundamental properties of the system. We then compare various coverings of the square lattice with plaquettes, dimers and other degrees of freedom, and show that only the {it symmetric plaquette} covering, which reproduces the original Bravais lattice, leads to the known phase diagram. The intermediate quantum paramagnetic phase is shown to be a (singlet) {it plaquette crystal}, connected with the neighboring Neel phase by a continuous phase transition. We also introduce fluctuations around the hierarchical mean-field solutions, and demonstrate that in the paramagnetic phase the ground and first excited states are separated by a finite gap, which closes in the Neel and columnar phases. Our results suggest that the quantum phase transition between Neel and paramagnetic phases can be properly described within the Ginzburg-Landau-Wilson paradigm.
We study the phase diagram of the 2D $J_1$-$J_1$-$J_2$ spin-1/2 Heisenberg model by means of the coupled cluster method. The effect of the coupling $J_1$ on the Neel and stripe states is investigated. We find that the quantum critical points for the Neel and stripe phases increase as the coupling strength $J_1$ is increased, and an intermediate phase emerges above the region at $J_1 approx 0.6$ when $J_1=1$. We find indications for a quantum triple point at $J_1 approx 0.60 pm 0.03$, $J_2 approx 0.33 pm 0.02$ for $J_1=1$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا