Do you want to publish a course? Click here

SNITCH: Seeking a simple, informative star formation history inference tool

67   0   0.0 ( 0 )
 Added by Rebecca Smethurst
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Deriving a simple, analytic galaxy star formation history (SFH) using observational data is a complex task without the proper tool to hand. We therefore present SNITCH, an open source code written in Python, developed to quickly (~2 minutes) infer the parameters describing an analytic SFH model from the emission and absorption features of a galaxy spectrum dominated by star formation gas ionisation. SNITCH uses the Flexible Stellar Population Synthesis models of Conroy et al. (2009), the MaNGA Data Analysis Pipeline and a Markov Chain Monte Carlo method in order to infer three parameters (time of quenching, rate of quenching and model metallicity) which best describe an exponentially declining quenching history. This code was written for use on the MaNGA spectral data cubes but is customisable by a user so that it can be used for any scenario where a galaxy spectrum has been obtained, and adapted to infer a user-defined analytic SFH model for specific science cases. Herein we outline the rigorous testing applied to SNITCH and show that it is both accurate and precise at deriving the SFH of a galaxy spectra. The tests suggest that SNITCH is sensitive to the most recent epoch of star formation but can also trace the quenching of star formation even if the true decline does not occur at an exponential rate. With the use of both an analytical SFH and only five spectral features, we advocate that this code be used as a comparative tool across a large population of spectra, either for integral field unit data cubes or across a population of galaxy spectra.



rate research

Read More

We show that supersonic MHD turbulence yields a star formation rate (SFR) as low as observed in molecular clouds (MCs), for characteristic values of the free-fall time divided by the dynamical time, $t_{rm ff}/t_{rm dyn}$, the alfv{e}nic Mach number, ${cal M}_{rm a}$, and the sonic Mach number, ${cal M}_{rm s}$. Using a very large set of deep adaptive-mesh-refinement simulations, we quantify the dependence of the SFR per free-fall time, $epsilon_{rm ff}$, on the above parameters. Our main results are: i) $epsilon_{rm ff}$ decreases exponentially with increasing $t_{rm ff}/t_{rm dyn}$, but is insensitive to changes in ${cal M}_{rm s}$, for constant values of $t_{rm ff}/t_{rm dyn}$ and ${cal M}_{rm a}$. ii) Decreasing values of ${cal M}_{rm a}$ (stronger magnetic fields) reduce $epsilon_{rm ff}$, but only to a point, beyond which $epsilon_{rm ff}$ increases with a further decrease of ${cal M}_{rm a}$. iii) For values of ${cal M}_{rm a}$ characteristic of star-forming regions, $epsilon_{rm ff}$ varies with ${cal M}_{rm a}$ by less than a factor of two. We propose a simple star-formation law, based on the empirical fit to the minimum $epsilon_{rm ff}$, and depending only on $t_{rm ff}/t_{rm dyn}$: $epsilon_{rm ff} approx epsilon_{rm wind} exp(-1.6 ,t_{rm ff}/t_{rm dyn})$. Because it only depends on the mean gas density and rms velocity, this law is straightforward to implement in simulations and analytical models of galaxy formation and evolution.
219 - Stefano Rubele 2009
The rich SMC star cluster NGC419 has recently been found to present both a broad main sequence turn-off and a dual red clump of giants, in the sharp colour-magnitude diagrams (CMD) derived from the High Resolution Channel of the Advanced Camera for Surveys on board the Hubble Space Telescope. In this work, we apply to the NGC419 data the classical method of star formation history (SFH) recovery via CMD reconstruction, deriving for the first time this function for a star cluster with multiple turn-offs. The values for the cluster metallicity, reddening, distance and binary fraction, were varied within the limits allowed by present observations. The global best-fitting solution is an excellent fit to the data, reproducing all the CMD features with striking accuracy. The corresponding star formation rate is provided together with estimates of its random and systematic errors. Star formation is found to last for at least 700 Myr, and to have a marked peak at the middle of this interval, for an age of 1.5 Gyr. Our findings argue in favour of multiple star formation episodes (or continued star formation) being at the origin of the multiple main sequence turn-offs in Magellanic Cloud clusters with ages around 1 Gyr. It remains to be tested whether alternative hypotheses, such as a main sequence spread caused by rotation, could produce similarly good fits to the data.
We present the first detailed quantitative study of the stellar populations of the Sagittarius (Sgr) streams within the Stripe 82 region, using photometric and spectroscopic observations from the Sloan Digital Sky Survey (SDSS). The star formation history (SFH) is determined separately for the bright and faint Sgr streams, to establish whether both components consist of a similar stellar population mix or have a distinct origin. Best fit SFH solutions are characterised by a well-defined, tight sequence in age-metallicity space, indicating that star formation occurred within a well-mixed, homogeneously enriched medium. Star formation rates dropped sharply at an age of ~5-7 Gyr, possibly related to the accretion of Sgr by the MW. Finally, the Sgr sequence displays a change of slope in age-metallicity space at an age between 11-13 Gyr consistent with the Sgr alpha-element knee, indicating that supernovae type Ia started contributing to the abundance pattern ~1-3 Gyr after the start of star formation. Results for both streams are consistent with being drawn from the parent Sgr population mix, but at different epochs. The SFH of the bright stream starts from old, metal-poor populations and extends to a metallicity of [Fe/H]~-0.7, with peaks at ~7 and 11 Gyr. The faint SFH samples the older, more metal-poor part of the Sgr sequence, with a peak at ancient ages and stars mostly with [Fe/H]<-1.3 and age>9 Gyr. Therefore, we argue in favour of a scenario where the faint stream consists of material stripped i) earlier, and ii) from the outskirts of the Sgr dwarf.
93 - Hui Dong 2018
We present the study of stellar populations in the central 5.5 (~1.2 kpc) of the M31 bulge by using the optical color magnitude diagram derived from HST ACS WFC/HRC observations. In order to enhance image quality and then obtain deeper photometry, we construct Nyquist-sampled images and use a deconvolution method to detect sources and measure their photometry. We demonstrate that our method performs better than DOLPHOT in the extremely crowded region. The resolved stars in the M31 bulge have been divided into nine annuli and the color magnitude diagram fitting is performed for each of them. We confirm that the majority of stars (> 70%) in the M31 bulge are indeed very old (>5 Gyr) and metal-rich ([Fe/H] > 0.3). At later times, the star formation rate decreased and then experienced a significant rise around 1 Gyr ago, which pervaded the entire M31 bulge. After that, stars formed at less than 500 Myr ago in the central 130. Through simulation, we find that these intermediate-age stars cannot be the artifacts introduced by the blending effect. Our results suggest that although the majority of the M31 bulge are very old, the secular evolutionary process still continuously builds up the M31 bulge slowly. We compare our star formation history with an older analysis derived from the spectral energy distribution fitting, which suggests that the latter one is still a reasonable tool for the study of stellar populations in remote galaxies.
We matched the 1.4 GHz local luminosity functions of star-forming galaxies (SFGs) and active galactic nuclei to the 1.4 GHz differential source counts from $0.25 mumathrm{Jy}$ to 25 Jy using combinations of luminosity and density evolution. We present the most robust and complete local far-infrared (FIR)/radio luminosity correlation to date in a volume-limited sample of $approx 4.3 times 10^3$ nearby SFGs, finding that it is very tight but distinctly sub-linear: $L_mathrm{FIR} propto L_mathrm{1.4,GHz}^{0.85}$. If the local FIR/radio correlation does not evolve, the evolving 1.4 GHz luminosity function of SFGs yields the evolving star-formation rate density (SFRD) $psi (M_odot mathrm{year}^{-1} mathrm{Mpc}^{-3}$) as a function of time since the big bang. The SFRD measured at 1.4 GHz grows rapidly at early times, peaks at cosmic noon when $t approx 3 mathrm{Gyr}$ and $z approx 2$, and subsequently decays with an $e$-folding time scale $tau = 3.2 mathrm{Gyr}$. This evolution is similar to, but somewhat stronger than, SFRD evolution estimated from UV and FIR data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا