Do you want to publish a course? Click here

Resonant inelastic x-ray incarnation of Youngs double-slit experiment

59   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Youngs archetypal double-slit experiment forms the basis for modern diffraction techniques: the elastic scattering of waves yields an interference pattern that captures the real-space structure. Here, we report on an inelastic incarnation of Youngs experiment and demonstrate that resonant inelastic x-ray scattering (RIXS) measures interference patterns which reveal the symmetry and character of electronic excited states in the same way as elastic scattering does for the ground state. A prototypical example is provided by the quasi-molecular electronic structure of insulating Ba3CeIr2O9 with structural Ir dimers and strong spin-orbit coupling. The double slits in this resonant experiment are the highly localized core levels of the two Ir atoms within a dimer. The clear double-slit-type sinusoidal interference patterns that we observe allow us to characterize the electronic excitations, demonstrating the power of RIXS interferometry to unravel the electronic structure of solids containing, e.g., dimers, trimers, ladders, or other superstructures.



rate research

Read More

We have implemented a virtual Youngs double slit experiment for hard X-ray photons with micro-fabricated bi-prisms. We observe fringe patterns with a scintillator, and quantify interferograms by detecting X-ray fluorescence from a scanned 30nm Cr metal film. The observed intensities are best modeled with a near-field, Fresnel analysis. The maximum fringe number in the overlap region is proportional to the ratio of real to imaginary parts refractive index of the prism material. The horizontal and vertical transverse coherence lengths at beamline APS 8-ID are measured.
Resonant inelastic x-ray scattering (RIXS) is an extremely valuable tool for the study of elementary, including magnetic, excitations in matter. Latest developments of this technique mostly aimed at improving the energy resolution and performing polarization analysis of the scattered radiation, with a great impact on the interpretation and applicability of RIXS. Instead, this article focuses on the sample environment and presents a setup for high-pressure low-temperature RIXS measurements of low-energy excitations. The feasibility of these experiments is proved by probing the magnetic excitations of the bilayer iridate Sr$_3$Ir$_2$O$_7$ at pressures up to 12 GPa.
To fully capitalize on the potential and versatility of resonant inelastic x-ray scattering (RIXS), it is essential to develop the capability to interpret different RIXS contributions through calculations, including the dependence on momentum transfer, from first-principles for correlated materials. Toward that objective, we present new methodology for calculating the full RIXS response of a correlated metal in an unbiased fashion. Through comparison of measurements and calculations that tune the incident photon energy over a wide portion of the Fe L$_3$ absorption resonance of the example material BaFe$_2$As$_2$, we show that the RIXS response in BaFe$_2$As$_2$ is dominated by the direct channel contribution, including the Raman-like response below threshold, which we explain as a consequence of the finite core-hole lifetime broadening. Calculations are initially performed within the first-principles Bethe-Salpeter framework, which we then significantly improve by convolution with an effective spectral function for the intermediate-state excitation. We construct this spectral function, also from first-principles, by employing the cumulant expansion of the Greens function and performing a real-time time dependent density functional theory calculation of the response of the electronic system to the perturbation of the intermediate-state excitation. Importantly, this allows us to evaluate the indirect RIXS response from first-principles, accounting for the full periodicity of the crystal structure and with dependence on the momentum transfer.
Topology is a central notion in the classification of band insulators and characterization of entangled many-body quantum states. In some cases, it manifests as quantized observables such as quantum Hall conductance. However, being inherently a global property depending on the entirety of the system, its direct measurement has remained elusive to local experimental probes in many cases. Here, we demonstrate that some topological band indices can be probed by resonant inelastic x-ray scattering. Specifically, for the paradigmatic Su-Schrieffer-Heeger and quadrupolar insulator models, we show that non-trivial band topology leads to distinct scattering intensity at particular momentum and energy. Our result establishes an incisive bulk probe for the measurement of band topology.
We analyze the resonant inelastic x-ray scattering (RIXS) spectra at the K edge of Mn in the antiferromagnetic insulating manganite LaMnO3. We make use of the Keldysh-type Green-function formalism, in which the RIXS intensity is described by a product of an incident-photon-dependent factor and a density-density correlation function in the 3d states. We calculate the former factor using the 4p density of states given by an ab initio band structure calculation and the latter using a multi-orbital tight-binding model. The ground state of the model Hamiltonian is evaluated within the Hartree-Fock approximation. Correlation effects are treated within the random phase approximation (RPA). We obtain the RIXS intensity in a wide range of energy-loss 2-15 eV. The spectral shape is strongly modified by the RPA correlation, showing good agreement with the experiments. The incident-photon-energy dependence also agrees well with the experiments. The present mechanism that the RIXS spectra arise from band-to-band transitions to screen the core-hole potential is quite different from the orbiton picture previously proposed, enabling a comprehensive understanding of the RIXS spectra.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا