No Arabic abstract
A weakly complete vector space over $mathbb{K}=mathbb{R}$ or $mathbb{K}=mathbb{C}$ is isomorphic to $mathbb{K}^X$ for some set $X$ algebraically and topologically. The significance of this type of topological vector spaces is illustrated by the fact that the underlying vector space of the Lie algebra of any pro-Lie group is weakly complete. In this study, weakly complete real or complex associative algebras are studied because they are necessarily projective limits of finite dimensional algebras. The group of units $A^{-1}$ of a weakly complete algebra $A$ is a pro-Lie group with the associated topological Lie algebra $A_{rm Lie}$ of $A$ as Lie algebra and the globally defined exponential function $expcolon Ato A^{-1}$ as the exponential function of $A^{-1}$. With each topological group, a weakly complete group algebra $mathbb{K}[G]$ is associated functorially so that the functor $Gmapsto mathbb{K}[G]$ is left adjoint to $Amapsto A^{-1}$. The group algebra $mathbb{K}[G]$ is a weakly complete Hopf algebra. If $G$ is compact, the $mathbb{R}[G]$ contains $G$ as the set of grouplike elements. The category of all real Hopf algebras $A$ with a compact group of grouplike elements whose linear span is dense in $A$ is shown to be equivalent to the category of compact groups. The group algebra $A=mathbb{R}[G]$ of a compact group $G$ contains a copy of the Lie algebra $mathcal{L}(G)$ in $A_{rm Lie}$; it also contains a copy of the Radon measure algebra $M(G,mathbb{R})$. The dual of the group algebra $mathbb{R}[G]$ is the Hopf algebra ${mathcal R}(G,mathbb{R})$ of representative functions of $G$. The rather straightforward duality between vector spaces and weakly complete vector spaces thus becomes the basis of a duality ${mathcal R}(G,mathbb{R})leftrightarrow mathbb{R}[G]$ and thus yields a new aspect of Tannaka duality.
We study group algebras for compact groups in the category of real and complex weakly complete vector spaces. We also show that the group algebra is a quotient of the weakly complete universal enveloping algebra of the Lie algebra of the compact group. We relate this to Tannaka duality, and to functorial properties of the group algebra. We determine the structure of the group algebra in terms of the irreducible representation, both in the real and the complex case. The particular case of a compact abelian group is worked out in detail.
We study universal enveloping Hopf algebras of Lie algebras in the category of weakly complete vector spaces over the real and complex field.
We consider homological finiteness properties $FP_n$ of certain $mathbb{N}$-graded Lie algebras. After proving some general results, see Theorem A, Corollary B and Corollary C, we concentrate on a family that can be considered as the Lie algebra version of the generalized Bestvina-Brady groups associated to a graph $Gamma$. We prove that the homological finiteness properties of these Lie algebras can be determined in terms of the graph in the same way as in the group case.
Let H be a reductive subgroup of a reductive group G over an algebraically closed field k. We consider the action of H on G^n, the n-fold Cartesian product of G with itself, by simultaneous conjugation. We give a purely algebraic characterization of the closed H-orbits in G^n, generalizing work of Richardson which treats the case H = G. This characterization turns out to be a natural generalization of Serres notion of G-complete reducibility. This concept appears to be new, even in characteristic zero. We discuss how to extend some key results on G-complete reducibility in this framework. We also consider some rationality questions.
We give an analog of Frobenius theorem about the factorization of the group determinant on the group algebra of finite abelian groups and we extend it into dihedral groups and generalized quaternion groups. Furthermore, we describe the group determinant of dihedral groups and generalized quaternion groups as a circulant determinant of homogeneous polynomials. This analog on the group algebra is stronger than Frobeniuss theorem and as a corollary, we obtain a simple expression formula for inverse elements in the group algebra. Furthermore, the commutators of irreducible factors of the factorization of the group determinant on the group algebra corresponding to degree one representations have interesting algebraic properties. From this result, we know that degree one representations form natural pairing. At the current stage, the extension of Frobeinus theorem is not represent as a determinant. We expect to find a determinant expression similar to Frobenius theorem.