Do you want to publish a course? Click here

Read, Watch, and Move: Reinforcement Learning for Temporally Grounding Natural Language Descriptions in Videos

84   0   0.0 ( 0 )
 Added by Dongliang He
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The task of video grounding, which temporally localizes a natural language description in a video, plays an important role in understanding videos. Existing studies have adopted strategies of sliding window over the entire video or exhaustively ranking all possible clip-sentence pairs in a pre-segmented video, which inevitably suffer from exhaustively enumerated candidates. To alleviate this problem, we formulate this task as a problem of sequential decision making by learning an agent which regulates the temporal grounding boundaries progressively based on its policy. Specifically, we propose a reinforcement learning based framework improved by multi-task learning and it shows steady performance gains by considering additional supervised boundary information during training. Our proposed framework achieves state-of-the-art performance on ActivityNet18 DenseCaption dataset and Charades-STA dataset while observing only 10 or less clips per video.



rate research

Read More

Temporal grounding of natural language in untrimmed videos is a fundamental yet challenging multimedia task facilitating cross-media visual content retrieval. We focus on the weakly supervised setting of this task that merely accesses to coarse video-level language description annotation without temporal boundary, which is more consistent with reality as such weak labels are more readily available in practice. In this paper, we propose a emph{Boundary Adaptive Refinement} (BAR) framework that resorts to reinforcement learning (RL) to guide the process of progressively refining the temporal boundary. To the best of our knowledge, we offer the first attempt to extend RL to temporal localization task with weak supervision. As it is non-trivial to obtain a straightforward reward function in the absence of pairwise granular boundary-query annotations, a cross-modal alignment evaluator is crafted to measure the alignment degree of segment-query pair to provide tailor-designed rewards. This refinement scheme completely abandons traditional sliding window based solution pattern and contributes to acquiring more efficient, boundary-flexible and content-aware grounding results. Extensive experiments on two public benchmarks Charades-STA and ActivityNet demonstrate that BAR outperforms the state-of-the-art weakly-supervised method and even beats some competitive fully-supervised ones.
108 - Jie Wu , Guanbin Li , Si Liu 2020
Temporally language grounding in untrimmed videos is a newly-raised task in video understanding. Most of the existing methods suffer from inferior efficiency, lacking interpretability, and deviating from the human perception mechanism. Inspired by humans coarse-to-fine decision-making paradigm, we formulate a novel Tree-Structured Policy based Progressive Reinforcement Learning (TSP-PRL) framework to sequentially regulate the temporal boundary by an iterative refinement process. The semantic concepts are explicitly represented as the branches in the policy, which contributes to efficiently decomposing complex policies into an interpretable primitive action. Progressive reinforcement learning provides correct credit assignment via two task-oriented rewards that encourage mutual promotion within the tree-structured policy. We extensively evaluate TSP-PRL on the Charades-STA and ActivityNet datasets, and experimental results show that TSP-PRL achieves competitive performance over existing state-of-the-art methods.
In this paper, we address a novel task, namely weakly-supervised spatio-temporally grounding natural sentence in video. Specifically, given a natural sentence and a video, we localize a spatio-temporal tube in the video that semantically corresponds to the given sentence, with no reliance on any spatio-temporal annotations during training. First, a set of spatio-temporal tubes, referred to as instances, are extracted from the video. We then encode these instances and the sentence using our proposed attentive interactor which can exploit their fine-grained relationships to characterize their matching behaviors. Besides a ranking loss, a novel diversity loss is introduced to train the proposed attentive interactor to strengthen the matching behaviors of reliable instance-sentence pairs and penalize the unreliable ones. Moreover, we also contribute a dataset, called VID-sentence, based on the ImageNet video object detection dataset, to serve as a benchmark for our task. Extensive experimental results demonstrate the superiority of our model over the baseline approaches.
The objective of this work is to annotate sign instances across a broad vocabulary in continuous sign language. We train a Transformer model to ingest a continuous signing stream and output a sequence of written tokens on a large-scale collection of signing footage with weakly-aligned subtitles. We show that through this training it acquires the ability to attend to a large vocabulary of sign instances in the input sequence, enabling their localisation. Our contributions are as follows: (1) we demonstrate the ability to leverage large quantities of continuous signing videos with weakly-aligned subtitles to localise signs in continuous sign language; (2) we employ the learned attention to automatically generate hundreds of thousands of annotations for a large sign vocabulary; (3) we collect a set of 37K manually verified sign instances across a vocabulary of 950 sign classes to support our study of sign language recognition; (4) by training on the newly annotated data from our method, we outperform the prior state of the art on the BSL-1K sign language recognition benchmark.
Generating videos from text is a challenging task due to its high computational requirements for training and infinite possible answers for evaluation. Existing works typically experiment on simple or small datasets, where the generalization ability is quite limited. In this work, we propose GODIVA, an open-domain text-to-video pretrained model that can generate videos from text in an auto-regressive manner using a three-dimensional sparse attention mechanism. We pretrain our model on Howto100M, a large-scale text-video dataset that contains more than 136 million text-video pairs. Experiments show that GODIVA not only can be fine-tuned on downstream video generation tasks, but also has a good zero-shot capability on unseen texts. We also propose a new metric called Relative Matching (RM) to automatically evaluate the video generation quality. Several challenges are listed and discussed as future work.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا