Do you want to publish a course? Click here

Topological and Geometric filtration for products

68   0   0.0 ( 0 )
 Added by Jin Cao
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We show that the Friedlander-Mazur conjecture holds for a sequence of products of projective varieties such as the product of a smooth projective curve and a smooth projective surface, the product of two smooth projective surfaces, the product of arbitrary number of smooth projective curves. Moreover, we show that the Friedlander-Mazur conjecture is stable under a surjective map. As applications, we show that the Friedlander-Mazur conjecture holds for the Jacobian variety of smooth projective curves, uniruled threefolds and unirational varieties up to certain range.



rate research

Read More

For a Grothendieck category C which, via a Z-generating sequence (O(n))_{n in Z}, is equivalent to the category of quasi-coherent modules over an associated Z-algebra A, we show that under suitable cohomological conditions taking quasi-coherent modules defines an equivalence between linear deformations of A and abelian deformations of C. If (O(n))_{n in Z} is at the same time a geometric helix in the derived category, we show that restricting a (deformed) Z-algebra to a thread of objects defines a further equivalence with linear deformations of the associated matrix algebra.
88 - Zhi Hu , Pengfei Huang 2020
In this paper, we prove that for the oper stratification of the de Rham moduli space $M_{mathrm{dR}}(X,r)$, the closed oper stratum is the unique minimal stratum with dimension $r^2(g-1)+g+1$, and the open dense stratum consisting of irreducible flat bundles with stable underlying vector bundles is the unique maximal stratum.
251 - Clint McCrory 2009
Using the work of Guillen and Navarro Aznar we associate to each real algebraic variety a filtered chain complex, the weight complex, which is well-defined up to filtered quasi-isomorphism, and which induces on Borel-Moore homology with Z/2 coefficients an analog of the weight filtration for complex algebraic varieties.
297 - Evgeny Shinder , Ziyu Zhang 2019
We construct nontrivial L-equivalence between curves of genus one and degree five, and between elliptic surfaces of multisection index five. These results give the first examples of L-equivalence for curves (necessarily over non-algebraically closed fields) and provide a new bit of evidence for the conjectural relationship between L-equivalence and derived equivalence. The proof of the L-equivalence for curves is based on Kuznetsovs Homological Projective Duality for Gr(2,5), and L-equivalence is extended from genus one curves to elliptic surfaces using the Ogg--Shafarevich theory of twisting for elliptic surfaces. Finally, we apply our results to K3 surfaces and investigate when the two elliptic L-equivalent K3 surfaces we construct are isomorphic, using Neron--Severi lattices, moduli spaces of sheaves and derived equivalence. The most interesting case is that of elliptic K3 surfaces of polarization degree ten and multisection index five, where the resulting L-equivalence is new.
This paper deals with two aspects of the theory of characteristic classes of star products: first, on an arbitrary Poisson manifold, we describe Morita equivalent star products in terms of their Kontsevich classes; second, on symplectic manifolds, we describe the relationship between Kontsevichs and Fedosovs characteristic classes of star products.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا