Diffusion in the mean for a periodic Schr{o}dinger equation perturbed by a fluctuating potential


Abstract in English

We consider the evolution of a quantum particle hopping on a cubic lattice in any dimension and subject to a potential consisting of a periodic part and a random part that fluctuates stochastically in time. If the random potential evolves according to a stationary Markov process, we obtain diffusive scaling for moments of the position displacement, with a diffusion constant that grows as the inverse square of the disorder strength at weak coupling. More generally, we show that a central limit theorem holds such that the square amplitude of the wave packet converges, after diffusive rescaling, to a solution of a heat equation.

Download