Substrate transfer and ex situ characterization of on-surface synthesized graphene nanoribbons


Abstract in English

Recent progress in the on-surface synthesis of graphene nanoribbons (GNRs) has given access to atomically precise narrow GNRs with tunable electronic band gaps that makes them excellent candidates for room-temperature switching devices such as field-effect transistors (FET). However, in spite of their exceptional properties, significant challenges remain for GNR processing and characterization. This contribution addresses some of the most important challenges, including GNR fabrication scalability, substrate transfer, long-term stability under ambient conditions and ex situ characterization. We focus on 7- and 9-atom wide armchair graphene nanoribbons (i.e, 7-AGNR; and 9-AGNR) grown on 200 nm Au(111)/mica substrates using a high throughput system. Transfer of both, 7- and 9-AGNRs from their Au growth sub-strate onto various target substrates for additional characterization is accomplished utilizing a polymer-free method that avoids residual contamination. This results in a homogeneous GNR film morphology with very few tears and wrinkles, as examined by atomic force microscopy. Raman spectroscopy indicates no significant degradation of GNR quality upon substrate transfer, and reveals that GNRs have remarkable stability under ambient conditions over a 24-month period. The transferred GNRs are analyzed using multi-wavelength Raman spectroscopy, which provides detailed insight into the wavelength dependence of the width-specific vibrational modes. Finally, we characterize the optical properties of 7- and 9-AGNRs via ultra-violet-visible (UV-Vis) spectroscopy

Download