Do you want to publish a course? Click here

Recent advances in MXenes: from fundamentals to applications

56   0   0.0 ( 0 )
 Added by Mohammad Khazaei
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The family of MAX phases and their derivative MXenes are continuously growing in terms of both crystalline and composition varieties. In the last couple of years, several breakthroughs have been achieved that boosted the synthesis of novel MAX phases with ordered double transition metals and, consequently, the synthesis of novel MXenes with a higher chemical diversity and structural complexity, rarely seen in other families of two-dimensional (2D) materials. Considering the various elemental composition possibilities, surface functional tunability, various magnetic orders, and large spin$-$orbit coupling, MXenes can truly be considered as multifunctional materials that can be used to realize highly correlated phenomena. In addition, owing to their large surface area, hydrophilicity, adsorption ability, and high surface reactivity, MXenes have attracted attention for many applications, e.g., catalysts, ion batteries, gas storage media, and sensors. Given the fast progress of MXene-based science and technology, it is timely to update our current knowledge on various properties and possible applications. Since many theoretical predictions remain to be experimentally proven, here we mainly emphasize the physics and chemistry that can be observed in MXenes and discuss how these properties can be tuned or used for different applications.



rate research

Read More

Symmetry is fundamental to understanding our physical world. An antisymmetry operation switches between two different states of a trait, such as two time-states, position-states, charge-states, spin-states, chemical-species etc. This review covers the fundamental concepts of antisymmetry, and focuses on four antisymmetries, namely spatial inversion in point groups, time reversal, distortion reversal and wedge reversion. The distinction between classical and quantum mechanical descriptions of time reversal is presented. Applications of these antisymmetries in crystallography, diffraction, determining the form of property tensors, classifying distortion pathways in transition state theory, finding minimum energy pathways, diffusion, magnetic structures and properties, ferroelectric and multiferroic switching, classifying physical properties in arbitrary dimensions, and antisymmetry-protected topological phenomena are presented.
Iron with a large magnetic moment was widely believed to be harmful to the emergence of superconductivity because of the competition between the static ordering of electron spins and the dynamic formation of electron pairs (Cooper pairs). Thus, the discovery of a high critical temperature (Tc) iron-based superconductor (IBSC) in 2008 was accepted with surprise in the condensed matter community and rekindled extensive study globally. IBSCs have since grown to become a new class of high-Tc superconductors next to the high-Tc cuprates discovered in 1986. The rapid research progress in the science and technology of IBSCs over the past decade has resulted in the accumulation of a vast amount of knowledge on IBSC materials, mechanisms, properties, and applications with the publication of more than several tens of thousands of papers. This article reviews recent progress in the technical applications (bulk magnets, thin films, and wires) of IBSCs in addition to their fundamental material characteristics. Highlights of their applications include high-field bulk magnets workable at 15-25 K, thin films with high critical current density (Jc) > 1 MA/cm2 at ~10 T and 4 K, and an average Jc of 1.3*104 A/cm2 at 10 T and 4 K achieved for a 100-m-class-length wire. These achievements are based on the intrinsically advantageous properties of IBSCs such as the higher crystallographic symmetry of the superconducting phase, higher critical magnetic field, and larger critical grain boundary angle to maintain high Jc. These properties also make IBSCs promising for applications using high magnetic fields.
Recent chemical exfoliation of layered MAX phase compounds to novel two-dimensional transition metal carbides and nitrides, so called MXenes, has brought new opportunity to materials science and technology. This review highlights the computational attempts that have been made to understand the physics and chemistry of this very promising family of advanced two-dimensional materials, and to exploit their novel and exceptional properties for electronic and energy harvesting applications.
The ability of spintronic devices to utilize an electric current for manipulating the magnetization has resulted in large-scale developments, such as, magnetic random access memories and boosted the spintronic research area. In this regard, over the last decade, magnetization manipulation using spin-orbit torque has been devoted a lot of research attention as it shows a great promise for future ultrafast and power efficient magnetic memories. In this review, we summarize the latest advancements in spin-orbit torque research and highlight some of the technical challenges for practical spin-orbit torque devices. We will first introduce the basic concepts and highlight the latest material choices for spin-orbit torque devices. Then, we will summarize the important advancements in the study of magnetization switching dynamics using spin-orbit torque, which are important from scientific as well as technological aspect. The final major section focuses on the concept of external assist field free spin-orbit torque switching which is a requirement for practical spin-orbit torque devices.
Interest in inorganic ternary nitride materials has grown rapidly over the past few decades, as their diversity of chemistries and structures make them appealing for a variety of applications. Due to synthetic challenges posed by the stability of N2, the number of predicted nitride compounds dwarfs those that have been synthesized, offering a breadth of opportunity for exploration. This review summarizes the fundamental properties and structural chemistry of ternary nitrides, leveraging metastability and the impact of nitrogen chemical potential. A discussion of prevalent defects, both detrimental and beneficial, is followed by a survey of synthesis techniques and their interplay with metastability. Throughout the review, we highlight applications (such as solid-state lighting, electrochemical energy storage, and electronic devices) in which ternary nitrides show particular promise.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا