Do you want to publish a course? Click here

Decomposition of games: some strategic considerations

76   0   0.0 ( 0 )
 Added by Marco Scarsini
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Candogan et al. (2011) provide an orthogonal direct-sum decomposition of finite games into potential, harmonic and nonstrategic components. In this paper we study the issue of decomposing games that are strategically equivalent from a game-theoretical point of view, for instance games obtained via transformations such as duplications of strategies or positive affine mappings of of payoffs. We show the need to define classes of decompositions to achieve commutativity of game transformations and decompositions.



rate research

Read More

173 - Mario Benevides 2014
In this paper we describe an approach to resolve strategic games in which players can assume different types along the game. Our goal is to infer which type the opponent is adopting at each moment so that we can increase the players odds. To achieve that we use Markov games combined with hidden Markov model. We discuss a hypothetical example of a tennis game whose solution can be applied to any game with similar characteristics.
It is known that there are uncoupled learning heuristics leading to Nash equilibrium in all finite games. Why should players use such learning heuristics and where could they come from? We show that there is no uncoupled learning heuristic leading to Nash equilibrium in all finite games that a player has an incentive to adopt, that would be evolutionary stable or that could learn itself. Rather, a player has an incentive to strategically teach such a learning opponent in order secure at least the Stackelberg leader payoff. The impossibility result remains intact when restricted to the classes of generic games, two-player games, potential games, games with strategic complements or 2x2 games, in which learning is known to be nice. More generally, it also applies to uncoupled learning heuristics leading to correlated equilibria, rationalizable outcomes, iterated admissible outcomes, or minimal curb sets. A possibility result restricted to strategically trivial games fails if some generic games outside this class are considered as well.
In this paper we introduce a novel flow representation for finite games in strategic form. This representation allows us to develop a canonical direct sum decomposition of an arbitrary game into three components, which we refer to as the potential, harmonic and nonstrategic components. We analyze natural classes of games that are induced by this decomposition, and in particular, focus on games with no harmonic component and games with no potential component. We show that the first class corresponds to the well-known potential games. We refer to the second class of games as harmonic games, and study the structural and equilibrium properties of this new class of games. Intuitively, the potential component of a game captures interactions that can equivalently be represented as a common interest game, while the harmonic part represents the conflicts between the interests of the players. We make this intuition precise, by studying the properties of these two classes, and show that indeed they have quite distinct and remarkable characteristics. For instance, while finite potential games always have pure Nash equilibria, harmonic games generically never do. Moreover, we show that the nonstrategic component does not affect the equilibria of a game, but plays a fundamental role in their efficiency properties, thus decoupling the location of equilibria and their payoff-related properties. Exploiting the properties of the decomposition framework, we obtain explicit expressions for the projections of games onto the subspaces of potential and harmonic games. This enables an extension of the properties of potential and harmonic games to nearby games. We exemplify this point by showing that the set of approximate equilibria of an arbitrary game can be characterized through the equilibria of its projection onto the set of potential games.
We consider the question of whether, and in what sense, Wardrop equilibria provide a good approximation for Nash equilibria in atomic unsplittable congestion games with a large number of small players. We examine two different definitions of small players. In the first setting, we consider games where each players weight is small. We prove that when the number of players goes to infinity and their weights to zero, the random flows in all (mixed) Nash equilibria for the finite games converge in distribution to the set of Wardrop equilibria of the corresponding nonatomic limit game. In the second setting, we consider an increasing number of players with a unit weight that participate in the game with a decreasingly small probability. In this case, the Nash equilibrium flows converge in total variation towards Poisson random variables whose expected values are Wardrop equilibria of a different nonatomic game with suitably-defined costs. The latter can be viewed as symmetric equilibria in a Poisson game in the sense of Myerson, establishing a plausible connection between the Wardrop model for routing games and the stochastic fluctuations observed in real traffic. In both settings we provide explicit approximation bounds, and we study the convergence of the price of anarchy. Beyond the case of congestion games, we prove a general result on the convergence of large games with random players towards Poisson games.
Stochastic games, introduced by Shapley, model adversarial interactions in stochastic environments where two players choose their moves to optimize a discounted-sum of rewards. In the traditional discounted reward semantics, long-term weights are geometrically attenuated based on the delay in their occurrence. We propose a temporally dual notion -- called past-discounting -- where agents have geometrically decaying memory of the rewards encountered during a play of the game. We study past-discounted weight sequences as rewards on stochastic game arenas and examine the corresponding stochastic games with discounted and mean payoff objectives. We dub these games forgetful discounted games and forgetful mean payoff games, respectively. We establish positional determinacy of these games and recover classical complexity results and a Tauberian theorem in the context of past discounted reward sequences.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا