Structural properties and decay modes of Z $=$ 122, 120 and 118 superheavy nuclei


Abstract in English

Structural properties and the decay modes of the superheavy elements Z $=$ 122, 120, 118 are studied in a microscopic framework. We evaluate the binding energy, one- and two- proton and neutron separation energy, shell correction and density profile of even and odd isotopes of Z $=$ 122, 120, 118 (284 $leq$ A $leq$ 352) which show a reasonable match with FRDM results and the available experimental data. Equillibrium shape and deformation of the superheavy region are predicted. We investigate the possible decay modes of this region specifically $alpha$-decay, spontaneous fission (SF) and the $beta$-decay and evaluate the probable $alpha$-decay chains. The phenomena of bubble like structure in the charge density is predicted in $^{330}$122, $^{292,328}$120 and $^{326}$118 with significant depletion fraction around 20-24$%$ which increases with increasing Coulomb energy and diminishes with increasing isospin (N$-$Z) values exhibiting the fact that the coloumb forces are the main driving force in the central depletion in superheavy systems.

Download