Do you want to publish a course? Click here

Force sensing with nanowire cantilevers

293   0   0.0 ( 0 )
 Added by Floris Braakman
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nanometer-scale structures with high aspect ratio such as nanowires and nanotubes combine low mechanical dissipation with high resonance frequencies, making them ideal force transducers and scanning probes in applications requiring the highest sensitivity. Such structures promise record force sensitivities combined with ease of use in scanning probe microscopes. A wide variety of possible material compositions and functionalizations is available, allowing for the sensing of various kinds of forces with optimized sensitivity. In addition, nanowires possess quasi-degenerate mechanical mode doublets, which has allowed the demonstration of sensitive vectorial force and mass detection. These developments have driven researchers to use nanowire cantilevers in various force sensing applications, which include imaging of sample surface topography, detection of optomechanical, electrical, and magnetic forces, and magnetic resonance force microscopy. In this review, we discuss the motivation behind using nanowires as force transducers, explain the methods of force sensing with nanowire cantilevers, and give an overview of the experimental progress and future prospects of the field.



rate research

Read More

Conventional readout of a superconducting nanowire single-photon detector (SNSPD) sets an upper bound on the output voltage to be the product of the bias current and the load impedance, $I_mathrm{B}times Z_mathrm{load}$, where $Z_mathrm{load}$ is limited to 50 $Omega$ in standard r.f. electronics. Here, we break this limit by interfacing the 50 $Omega$ load and the SNSPD using an integrated superconducting transmission line taper. The taper is a transformer that effectively loads the SNSPD with high impedance without latching. It increases the amplitude of the detector output while preserving the fast rising edge. Using a taper with a starting width of 500 nm, we experimentally observed a 3.6$times$ higher pulse amplitude, 3.7$times$ faster slew rate, and 25.1 ps smaller timing jitter. The results match our numerical simulation, which incorporates both the hotspot dynamics in the SNSPD and the distributed nature in the transmission line taper. The taper studied here may become a useful tool to interface high-impedance superconducting nanowire devices to conventional low-impedance circuits.
This report describes a cantilever controller for magnetic resonance force microscopy (MRFM) based on a field programmable gate array (FPGA), along with the hardware and software used to integrate the controller into an experiment. The controller is assembled from a low-cost commercially available software defined radio (SDR) device and libraries of open-source software. The controller includes a digital filter comprising two cascaded second-order sections (biquads), which together can implement transfer functions for optimal cantilever controllers. An appendix in this report shows how to calculate filter coefficients for an optimal controller from measured cantilever characteristics. The controller also includes an input multiplexer and adder used in calibration protocols. Filter coefficients and multiplexer settings can be set and adjusted by control software while an experiment is running. The input is sampled at 64 MHz; the sampling frequency in the filters can be divided down under software control to achieve a good match with filter characterisics. Data reported here were sampled at 500 kHz, chosen for acoustic cantilevers with resonant frequencies near 8 kHz. Inputs are digitized with 12 bits resolution, outputs with 14 bits. The experiment software is organized as a client and server to make it easy to adapt the controller to different experiments. The server encapusulates the details of controller hardware organization, connection technology, filter architecture, and number representation. The same server could be used in any experiment, while a different client encodes the particulars of each experiment.
Atomic force microscope (AFM) users often calibrate the spring constants of cantilevers using functionality built into individual instruments. This is performed without reference to a global standard, which hinders robust comparison of force measurements reported by different laboratories. In this article, we describe a virtual instrument (an internet-based initiative) whereby users from all laboratories can instantly and quantitatively compare their calibration measurements to those of others - standardising AFM force measurements - and simultaneously enabling non-invasive calibration of AFM cantilevers of any geometry. This global calibration initiative requires no additional instrumentation or data processing on the part of the user. It utilises a single website where users upload currently available data. A proof-of-principle demonstration of this initiative is presented using measured data from five independent laboratories across three countries, which also allows for an assessment of current calibration.
We present a scanning magnetic force sensor based on an individual magnet-tipped GaAs nanowire (NW) grown by molecular beam epitaxy. Its magnetic tip consists of a final segment of single-crystal MnAs formed by sequential crystallization of the liquid Ga catalyst droplet. We characterize the mechanical and magnetic properties of such NWs by measuring their flexural mechanical response in an applied magnetic field. Comparison with numerical simulations allows the identification of their equilibrium magnetization configurations, which in some cases include magnetic vortices. To determine a NWs performance as a magnetic scanning probe, we measure its response to the field profile of a lithographically patterned current-carrying wire. The NWs tiny tips and their high force sensitivity make them promising for imaging weak magnetic field patterns on the nanometer-scale, as required for mapping mesoscopic transport and spin textures or in nanometer-scale magnetic resonance.
Wavefront sensors are an important tool to characterize coherent beams of extreme ultraviolet radiation. However, conventional Hartmann-type sensors do not allow for independent wavefront characterization of different spectral components that may be present in a beam, which limits their applicability for intrinsically broadband high-harmonic generation (HHG) sources. Here we introduce a wavefront sensor that measures the wavefronts of all the harmonics in a HHG beam in a single camera exposure. By replacing the mask apertures with transmission gratings at different orientations, we simultaneously detect harmonic wavefronts and spectra, and obtain sensitivity to spatiotemporal structure such as pulse front tilt as well. We demonstrate the capabilities of the sensor through a parallel measurement of the wavefronts of 9 harmonics in a wavelength range between 25 and 49 nm, with up to lambda/32 precision.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا