Do you want to publish a course? Click here

Ergodicity and type of nonsingular Bernoulli actions

329   0   0.0 ( 0 )
 Added by Stefaan Vaes
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We determine the Krieger type of nonsingular Bernoulli actions $G curvearrowright prod_{g in G} ({0,1},mu_g)$. When $G$ is abelian, we do this for arbitrary marginal measures $mu_g$. We prove in particular that the action is never of type II$_infty$ if $G$ is abelian and not locally finite, answering Krengels question for $G = mathbb{Z}$. When $G$ is locally finite, we prove that type II$_infty$ does arise. For arbitrary countable groups, we assume that the marginal measures stay away from $0$ and $1$. When $G$ has only one end, we prove that the Krieger type is always I, II$_1$ or III$_1$. When $G$ has more than one end, we show that other types always arise. Finally, we solve the conjecture of [VW17] by proving that a group $G$ admits a Bernoulli action of type III$_1$ if and only if $G$ has nontrivial first $L^2$-cohomology.



rate research

Read More

82 - Yongle Jiang 2021
We prove that for any two continuous minimal (topologically free) actions of the infinite dihedral group on an infinite compact Hausdorff space, they are continuously orbit equivalent only if they are conjugate. We also show the above fails if we replace the infinite dihedral group with certain other virtually cyclic groups, e.g. the direct product of the integer group with any non-abelian finite simple group.
218 - David Kerr , Hanfeng Li 2010
We show that, for countable sofic groups, a Bernoulli action with infinite entropy base has infinite entropy with respect to every sofic approximation sequence. This builds on the work of Lewis Bowen in the case of finite entropy base and completes the computation of measure entropy for Bernoulli actions over countable sofic groups. One consequence is that such a Bernoulli action fails to have a generating countable partition with finite entropy if the base has infinite entropy, which in the amenable case is well known and in the case that the acting group contains the free group on two generators was established by Bowen using a different argument.
An textit{algebraic} action of a discrete group $Gamma $ is a homomorphism from $Gamma $ to the group of continuous automorphisms of a compact abelian group $X$. By duality, such an action of $Gamma $ is determined by a module $M=widehat{X}$ over the integer group ring $mathbb{Z}Gamma $ of $Gamma $. The simplest examples of such modules are of the form $M=mathbb{Z}Gamma /mathbb{Z}Gamma f$ with $fin mathbb{Z}Gamma $; the corresponding algebraic action is the textit{principal algebraic $Gamma $-action} $alpha _f$ defined by $f$. In this note we prove the following extensions of results by Hayes cite{Hayes} on ergodicity of principal algebraic actions: If $Gamma $ is a countably infinite discrete group which is not virtually cyclic, and if $finmathbb{Z}Gamma $ satisfies that right multiplication by $f$ on $ell ^2(Gamma ,mathbb{R})$ is injective, then the principal $Gamma $-action $alpha _f$ is ergodic (Theorem ref{t:ergodic2}). If $Gamma $ contains a finitely generated subgroup with a single end (e.g. a finitely generated amenable subgroup which is not virtually cyclic), or an infinite nonamenable subgroup with vanishing first $ell ^2$-Betti number (e.g., an infinite property $T$ subgroup), the injectivity condition on $f$ can be replaced by the weaker hypothesis that $f$ is not a right zero-divisor in $mathbb{Z}Gamma $ (Theorem ref{t:ergodic1}). Finally, if $Gamma $ is torsion-free, not virtually cyclic, and satisfies Linnells textit{analytic zero-divisor conjecture}, then $alpha _f$ is ergodic for every $fin mathbb{Z}Gamma $ (Remark ref{r:analytic zero divisor}).
We show that dynamical and counting results characteristic of negatively-curved Riemannian geometry, or more generally CAT($-1$) or rank-one CAT(0) spaces, also hold for rank-one properly convex projective structures, equipped with their Hilbert metrics, admitting finite Sullivan measures built from appropriate conformal densities. In particular, this includes geometrically finite convex projective structures. More specifically, with respect to the Sullivan measure, the Hilbert geodesic flow is strongly mixing, and orbits and primitive closed geodesics equidistribute, allowing us to asymptotically enumerate these objects.
81 - Olga Lukina 2018
In this paper, we study the actions of profinite groups on Cantor sets which arise from representations of Galois groups of certain fields of rational functions. Such representations are associated to polynomials, and they are called profinite iterated monodromy groups. We are interested in a topological invariant of such actions called the asymptotic discriminant. In particular, we give a complete classification by whether the asymptotic discriminant is stable or wild in the case when the polynomial generating the representation is quadratic. We also study different ways in which a wild asymptotic discriminant can arise.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا