Do you want to publish a course? Click here

Dissecting the active galactic nucleus in Circinus -- II. A thin dusty disc and a polar outflow on parsec scales

224   0   0.0 ( 0 )
 Added by Marko Stalevski
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent observations which resolved the mid-infrared (MIR) emission of nearby active galactic nuclei (AGN), surprisingly revealed that their dust emission appears prominently extended in the polar direction, at odds with the expectations from the canonical dusty torus. This polar dust, tentatively associated with dusty winds driven by radiation pressure, is found to have a major contribution to the MIR flux from scales of a few to hundreds of parsecs. When facing a potential change of paradigm, case studies of objects with the best intrinsic resolution are essential. One such source with a clear detection of polar dust is a nearby, well-known AGN in the Circinus galaxy. In the first paper, we successfully explained the peculiar MIR morphology of Circinus observed on large, tens of parsec scales with a model consisting of a compact dusty disc and an extended hollow dusty cone. In this work, we further refine the model on smaller, parsecs scales to test whether it can also explain the MIR interferometric data. We find that a model composed of a thin dusty disc seen almost edge-on and a polar outflow in the form of a hyperboloid shell can reproduce well the VLTI/MIDI observations at all wavelengths, baselines and position angles. In contrast, while providing a good fit to the integrated MIR spectrum, the dusty torus model fails to reproduce the spatially resolved interferometric data. We put forth the disc$+$hyperboloid wind model of Circinus AGN as a prototype for the dust structure in the AGN population with polar dust.

rate research

Read More

Recent high angular resolution observations resolved for the first time the mid-infrared (MIR) structure of nearby active galactic nuclei (AGN). Surprisingly, they revealed that a major fraction of their MIR emission comes from the polar regions. This is at odds with the expectation based on AGN unification, which postulates a dusty torus in the equatorial region. The nearby, archetypical AGN in the Circinus galaxy offers one of the best opportunities to study the MIR emission in greater detail. New, high quality MIR images obtained with the upgraded VISIR instrument at the Very Large Telescope show that the previously detected bar-like structure extends up to at least 40 pc on both sides of the nucleus along the edges of the ionization cone. Motivated by observations across a wide wavelength range and on different spatial scales, we propose a phenomenological dust emission model for the AGN in the Circinus galaxy consisting of a compact dusty disk and a large-scale dusty cone shell, illuminated by a tilted accretion disk with an anisotropic emission pattern. Undertaking detailed radiative transfer simulations, we demonstrate that such a model is able to explain the peculiar MIR morphology and account for the entire IR spectral energy distribution. Our results call for caution when attributing dust emission of unresolved sources entirely to the torus and warrant further investigation of the MIR emission in the polar regions of AGN.
Infrared interferometry of local AGN has revealed a warm (~300K-400K) polar dust structure that cannot be trivially explained by the putative dust torus of the unified model. This led to the development of the disk+wind scenario which comprises of a hot (~1000K) compact equatorial dust disk and a polar dust wind. This wind is assumed to be driven by radiation pressure and, therefore, we would expect that long term variation in radiation pressure would influence the dust distribution. In this paper we attempt to quantify if and how the dust distribution changes with radiation pressure. We analyse so far unpublished VLTI/MIDI data on 8 AGN and use previous results on 25 more to create a sample of 33 AGN. This sample comprises all AGN successfully observed with VLTI/MIDI. For each AGN, we calculate the Eddington ratio, using the intrinsic 2-10keV X-ray luminosity and black hole mass, and compare this to the resolved dust emission fraction as seen by MIDI. We tentatively conclude that there is more dust in the wind at higher Eddington ratios, at least in type 2 AGN where such an effect is expected to be more easily visible.
We report first results from KVN and VERA Array (KaVA) VLBI observations obtained in the frame of our Plasma-physics of Active Galactic Nuclei (PAGaN) project. We observed eight selected AGN at 22 and 43 GHz in single polarization (LCP) between March 2014 and April 2015. Each source was observed for 6 to 8 hours per observing run to maximize the $uv$ coverage. We obtained a total of 15 deep high-resolution images permitting the identification of individual circular Gaussian jet components and three spectral index maps of BL Lac, 3C 111 and 3C 345 from simultaneous dual-frequency observations. The spectral index maps show trends in agreement with general expectations -- flat core and steep jets -- while the actual value of the spectral index for jets shows indications for a dependence on AGN type. We analyzed the kinematics of jet components of BL Lac and 3C 111, detecting superluminal proper motions with maximum apparent speeds of about $5c$. This constrains the lower limits of the intrinsic component velocities to $sim0.98c$ and the upper limits of the angle between jet and line of sight to $sim$20$deg$. In agreement with global jet expansion, jet components show systematically larger diameters $d$ at larger core distances $r$, following the global relation $dapprox0.2r$, albeit within substantial scatter.
We study the relation between stellar ages and vertical velocity dispersion (the age-velocity relation, or AVR) in a sample of seven simulated disc galaxies. In our simulations, the shape of the AVR for stars younger than 9 Gyr depends strongly on the merger history at low redshift, with even 1:10 - 1:15 mergers being able to create jumps in the AVR (although these jumps might not be detectable if the errors on stellar ages are on the order of 30%). For galaxies with a quiescent history at low redshift, we find that the vertical velocity dispersion rises smoothly for ages up to 8-9 Gyr, following a power law with a slope of ~0.5, similar to what is observed in the solar neighbourhood by the Geneva-Copenhagen Survey. For these galaxies, we show that the slope of the AVR is not imprinted at birth, but is the result of subsequent heating. By contrast, in all our simulations, the oldest stars form a significantly different population, with a high velocity dispersion. These stars are usually born kinematically hot in a turbulent phase of intense mergers at high redshift, and also include some stars accreted from satellites. This maximum in velocity dispersion is strongly decreased when age errors are included, suggesting that observations can easily miss such a jump with the current accuracy of age measurements.
We present the first VLBI maps of H2O maser emission (lambda 1.3cm) in the nucleus of the Circinus Galaxy, constructed from data obtained with the Australia Telescope Long Baseline Array. The maser emission traces a warped, edge-on accretion disk between radii of 0.11+/-0.02 and ~0.40 pc, as well as a wide-angle outflow that extends up to ~1 pc from the estimated disk center. The disk rotation is close to Keplerian (v varies as 1/sqrt(r)), the maximum detected rotation speed is 260 km/s, and the inferred central mass is 1.7+/-0.3 x 10^6 solar masses. The outflowing masers are irregularly distributed above and below the disk, with relative outflow velocities up to ~+/-160 km/s, projected along the line of sight. The flow probably originates closer than 0.1 pc to the central engine, possibly in an inward extension of the accretion disk, though there is only weak evidence of rotation in the outward moving material. We observe that the warp of the disk appears to collimate the outflow and to fix the extent of the ionization cone observed on larger angular scales. This study provides the first direct evidence (i.e., through imaging) of dusty, high-density, molecular material in a nuclear outflow <1 pc from the central engine of a Seyfert galaxy, as well as the first graphic evidence that warped accretion disks can channel outflows and illumination patterns in AGN. We speculate that the same arrangement, which in some ways obviates the need for a geometrically thick, dusty torus, may apply to other type-2 AGN.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا