Van Hove Singularities and Excited-State Quantum Phase Transitions in Graphene-like Microwave Billiards


Abstract in English

We discuss solutions of an algebraic model of the hexagonal lattice vibrations, which point out interesting localization properties of the eigenstates at van Hove singularities (vHs), whose energies correspond to Excited-State Quantum Phase Transitions (ESQPT). We show that these states form stripes oriented parallel to the zig-zag direction of the lattice, similar to the well-known edge states found at the Dirac point, however the vHs-stripes appear in the bulk. We interpret the states as lines of cell-tilting vibrations, and inspect their stability in the large lattice-size limit. The model can be experimentally realized by superconducting 2D microwave resonators containing triangular lattices of metallic cylinders, which simulate finite-sized graphene flakes. Thus we can assume that the effects discussed here could be experimentally observed.

Download