Do you want to publish a course? Click here

Induced and endogenous acoustic oscillations in granular faults

68   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The frictional properties of disordered systems are affected by external perturbations. These perturbations usually weaken the system by reducing the macroscopic friction coefficient. This friction reduction is of particular interest in the case of disordered systems composed of granular particles confined between two plates, as this is a simple model of seismic fault. Indeed, in the geophysical context frictional weakening could explain the unexpected weakness of some faults, as well as earthquake remote triggering. In this manuscript we review recent results concerning the response of confined granular systems to external perturbations, considering the different mechanisms by which the perturbation could weaken a system, the relevance of the frictional reduction to earthquakes, as well as discussing the intriguing scenario whereby the weakening is not monotonic in the perturbation frequency, so that a re-entrant transition is observed, as the system first enters a fluidized state and then returns to a frictional state.



rate research

Read More

133 - Clemence Devailly 2015
We report here the observation of a surprising phenomenon consisting in a oscillating phase transition which appears in a binary mixture, PMMA/3-octanone, when this is enlightened by a strongly focused infrared laser beam. PMMA/3-octanone has a UCST (Upper Critical Solution Temperature) which presents a critical point at temperature Tc = 306.6 K and volume fraction $phi$c = 12.8 % [Crauste et al., ArXiv 1310.6720, 2012]. This oscillatory phenomenon appears because of thermophoretic and electrostriction effects and non-linear diffusion. We analyze these oscillations and we propose a simple model which includes the minimal ingredients to produce the oscillatory behavior. Phase transitions in binary mixtures are still a widely studied subject, specifically near the critical point where several interesting and not completely understood phenomena may appear, among them we recall the critical Casimir forces [2],[3], confinement effects [4], [5] and out-of-equilibrium dynamics after a quench. The perturbation of the binary mixtures by mean of external fields is also an important and recent field of investigation [6]. For example, a laser can induce interesting phenomena in demixing binary mixtures because the radiation pressure can deform the interface between the two phases and it can be used to measure the interface tension [7]. Depending on the nature of the binary mixtures, laser illumination can also lead to a mixing or demixing transition. In ref.[8], focused infrared laser light heats the medium initially in the homogeneous phase and causes a separation in the LCST (Low Critical Solution Temperature) system. The radiation pressure gradients in a laser beam also contribute in the aggregation of polymers , thus producing a phase transition. The local heating may induce thermophoretic forces which attract towards the laser beam one of the binary-mixture components [9]. Other forces like electrostriction can also be involved [10]. In this letter, we report a new phenomenon, which consists in an oscillating phase transition induced by a constant illumination from an infrared laser beam in the heterogeneous region of an UCST (Upper Critical Solution Temperature) binary mixture. Oscillation phenomena in phase transition have already been reported in slow cooling UCST [11],[12] but as far as we know, never induced by a stationary laser illumination. After describing our experimental setup , we will present the results. Then we will use a very simplified model which contains the main necessary physical ingredients to induce this oscillation phenomenon.
The role of forcing on the dynamics of a vertically shaken granular monolayer is investigated. Using a flat plate, surprising negative velocity correlations are measured. A mechanism for this anti-correlation is proposed with support from both experimental results and molecular dynamics simulations. Using a rough plate, velocity correlations are positive, and the velocity distribution evolves from a gaussian at very low densities to a broader distribution at high densities. These results are interpreted as a balance between stochastic forcing, interparticle collisions, and friction with the plate.
We perform three-dimensional simulations of a granular jet impact for both frictional and frictionless grains. Small shear stress observed in the experiment[X. Cheng et al., Phys. Rev. Lett. 99, 188001 (2007) ] is reproduced through our simulation. However, the fluid state after the impact is far from a perfect fluid, and thus, similarity between granular jets and quark gluon plasma is superficial, because the observed viscosity is finite and its value is consistent with the prediction of the kinetic theory.
Recent experiments with rotational diffusion of a probe in a vibrated granular media revealed a rich scenario, ranging from the dilute gas to the dense liquid with cage effects and an unexpected superdiffusive behavior at large times. Here we setup a simulation that reproduces quantitatively the experimental observations and allows us to investigate the properties of the host granular medium, a task not feasible in the experiment. We discover a persistent collective rotational mode which emerges at high density and low granular temperature: a macroscopic fraction of the medium slowly rotates, randomly switching direction after very long times. Such a rotational mode of the host medium is the origin of probes superdiffusion. Collective motion is accompanied by a kind of dynamical heterogeneity at intermediate times (in the cage stage) followed by a strong reduction of fluctuations at late times, when superdiffusion sets in.
The way granular materials response to an applied shear stress is of the utmost relevance to both human activities and natural environment. One of the their most intriguing and less understood behavior, is the stick-instability, whose most dramatic manifestation are earthquakes, ultimately governed by the dynamics of rocks and debris jammed within the fault gauge. Many of the features of earthquakes, i.e. intermittency, broad times and energy scale involved, are mimicked by a very simple experimental set-up, where small beads of glass under load are slowly sheared by an elastic medium. Analyzing data from long lasting experiments, we identify a critical dynamical regime, that can be related to known theoretical models used for crackling-noise phenomena. In particular, we focus on the average shape of the slip velocity, observing a breakdown of scaling: while small slips show a self-similar shape, large does not, in a way that suggests the presence of subtle inertial effects within the granular system. In order to characterise the crossover between the two regimes, we investigate the frictional response of the system, which we trat as a stochastic quantity. Computing different averages, we evidence a weakening effect, whose Stribeck threshold velocity can be related to the aforementioned breaking of scaling.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا