Cohesive Powers of Linear Orders


Abstract in English

Cohesive powers of computable structures can be viewed as effective ultraproducts over effectively indecomposable sets called cohesive sets. We investigate the isomorphism types of cohesive powers $Pi _{C}% mathcal{L}$ for familiar computable linear orders $mathcal{L}$. If $% mathcal{L}$ is isomorphic to the ordered set of natural numbers $mathbb{N}$ and has a computable successor function, then $Pi _{C}mathcal{L}$ is isomorphic to $mathbb{N}+mathbb{Q}times mathbb{Z}.$ Here, $+$ stands for the sum and $times $ for the lexicographical product of two orders. We construct computable linear orders $mathcal{L}_{1}$ and $mathcal{L}_{2}$ isomorphic to $mathbb{N},$ both with noncomputable successor functions, such that $Pi _{C}mathcal{L}_{1}mathbb{ }$is isomorphic to $mathbb{N}+% mathbb{Q}times mathbb{Z}$, while $Pi _{C}mathcal{L}_{2}$ is not$.$ While cohesive powers preserve all $Pi _{2}^{0}$ and $Sigma _{2}^{0}$ sentences, we provide new examples of $Pi _{3}^{0}$ sentences $Phi $ and computable structures $% mathcal{M}$ such that $mathcal{M}vDash Phi $ while $Pi _{C}mathcal{M}% vDash urcorner Phi .$

Download