No Arabic abstract
The reactor antineutrinos are used for the precise measurement of oscillation parameters in the 3-neutrino model, and also used to investigate active-sterile neutrino mixing sensitivity in the 3$+$1 neutrino framework. In the present work, we study the feasibility of sterile neutrino search with the Indian Scintillator Matrix for Reactor Anti-Neutrino (ISMRAN) experimental set-up using electron antineutrinos ($overline{ u}_e$) produced from reactor as a source. The so-called 3$+$1 scenario is considered for active-sterile neutrino mixing, which leads to projected exclusion curves in the sterile neutrino mass and mixing angle plane. The analysis is performed considering both the reactor and detector related parameters. It is found that, the ISMRAN set-up can observe the active-sterile neutrino mixing sensitivity for $sin^{2}2theta_{14} geq$ 0.064 and $Delta m^{2}_{41}$ = 1.0 eV$^2$ at 90$%$ confidence level for an exposure of 1 ton-year by using neutrinos produced from the DHRUVA reactor with thermal power of 100 MW$_{th}$. It is also observed that, there is a significant improvement of the active-sterile neutrino mixing parameter $sin^{2}2theta_{14}$ to $sim$ 0.03 at the same $Delta m^{2}_{41}$ by putting the ISMRAN detector set-up at a distance of 20 m from the compact proto-type fast breeder reactor (PFBR) facility with thermal power of 1250 MW$_{th}$.
In this work, we present an analysis of the sensitivity to the active-sterile neutrino mixing with the Indian Scintillator Matrix for Reactor Anti-Neutrino (ISMRAN) experimental set-up at very short baseline. In this article, we have considered the measurement of electron antineutrino induced events employing a single detector which can be placed either at a single position or moved between near and far positions from the given reactor core. Results extracted in the later case are independent of the theoretical prediction of the reactor anti-neutrino spectrum and detector related systematic uncertainties. Our analysis shows that the results obtained from the measurement carried out at a combination of the near and far detector positions are improved significantly at higher $Delta m^{2}_{41}$ compared to the ones obtained with the measurement at a single detector position only. It is found that the best possible combination of near and far detector positions from a 100 MW$_{th}$ power DHRUVA research reactor core are 7 m and 9 m, respectively, for which ISMRAN set-up can exclude in the range 1.4 $eV^{2} leq Delta m^{2}_{41} leq$ 4.0 $eV^{2}$ of reactor antineutrino anomaly region along with the present best-fit point of active-sterile neutrino oscillation parameters. At those combinations of detector positions, the ISMRAN set-up can observe the active sterile neutrino oscillation with a 95$%$ confidence level provided that $sin^{2}2theta_{14}geq 0.09$ at $Delta m^{2}_{41}$ = 1 eV$^{2}$ for an exposure of 1 ton-yr. The active-sterile neutrino mixing sensitivity can be improved by about 22% at the same exposure by placing the detector at near and far distances of 15 m and 17 m, respectively, from the compact proto-type fast breeder reactor (PFBR) facility which has a higher thermal power of 1250 MW$_{th}$.
KM3NeT/ORCA is a next-generation neutrino telescope optimised for atmospheric neutrino oscillations studies. In this paper, the sensitivity of ORCA to the presence of a light sterile neutrino in a 3+1 model is presented. After three years of data taking, ORCA will be able to probe the active-sterile mixing angles $theta_{14}$, $theta_{24}$, $theta_{34}$ and the effective angle $theta_{mu e}$, over a broad range of mass squared difference $Delta m^2_{41} sim [10^{-5}, 10]$ $rm{eV}^2$, allowing to test the eV-mass sterile neutrino hypothesis as the origin of short baseline anomalies, as well as probing the hypothesis of a very light sterile neutrino, not yet constrained by cosmology. ORCA will be able to explore a relevant fraction of the parameter space not yet reached by present measurements.
We study the feasibility of a sterile neutrino search at the China Advanced Research Reactor by measuring $bar { u}_e$ survival probability with a baseline of less than 15 m. Both hydrogen and deuteron have been considered as potential targets. The sensitivity to sterile-to-regular neutrino mixing is investigated under the 3(active)+1(sterile) framework. We find that the mixing parameter $sin^2(2theta_{14})$ can be severely constrained by such measurement if the mass square difference $Delta m_{14}^2$ is of the order of $sim$1 eV$^2$.
There has been designed an experimental project Neutrino-4 for 100 MW reactor SM-3 to test the hypothesis of the reactor antineutrino anomaly. Advantages of the reactor SM-3 for such an experiment are low background conditions as well as small dimensions of a reactor core - 35x42x42 cm3. One has carried on the Monte-Carlo modeling of a position sensitive antineutrino detector consisting of 5 operation sections, which as a result of displacement, covers the distance from 6 to 13 meters from the reactor core. One has succeeded in obtaining an experimental area of sensitivity to oscillation parameters, which enables to verify the hypothesis of reactor antineutrino oscillations into a sterile state.
We present results from global fits to the available reactor antineutrino dataset, as of Fall 2019, to determine the global preference for a fourth, sterile neutrino. We have separately considered experiments that measure the integrated inverse-beta decay (IBD) rate from those that measure the energy spectrum of IBD events at one or more locations. The software used is the newly developed GLoBESfit tool set which is based on the publicly available GLoBES framework and will be released as open-source software.