Do you want to publish a course? Click here

Imprint of the stochastic nature of photon emission by electrons on the proton energy spectra in the laser-plasma interaction

84   0   0.0 ( 0 )
 Added by Jianxing Li
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The impact of stochasticity effects (SEs) in photon emissions on the proton energy spectra during laser-plasma interaction is theoretically investigated in the quantum radiation-dominated regime, which may facilitate SEs experimental observation. We calculate the photon emissions quantum mechanically and the plasma dynamics semiclassically via two-dimensional particle-in-cell simulations. An ultrarelativistic plasma generated and driven by an ultraintense laser pulse head-on collides with another strong laser pulse, which decelerates the electrons due to radiation-reaction effect and results in a significant compression of the proton energy spectra because of the charge separation force. In the considered regime the SEs are demonstrated in the shift of the mean energy of the protons up to hundreds of MeV. This effect is robust with respect to the laser and target parameters and measurable in soon available strong laser facilities.



rate research

Read More

166 - S. Kawata , D. Sato , T. Izumiyama 2012
A remarkable ion energy increase is demonstrated by several-stage post-acceleration in a laser plasma interaction. Intense short-pulse laser generates a strong current by high-energy electrons accelerated, when an intense short-pulse laser illuminates a plasma target. The strong electric current creates a strong magnetic field along the high-energy electron current in plasma. During the increase phase of the magnetic field, the longitudinal inductive electric field is induced for the forward ion acceleration by the Faraday law. The inductive acceleration and the target-normal sheath acceleration in the multi stages provide a unique controllability of the ion energy. By the four-stage successive acceleration, our 2.5-dimensional particle-in-cell simulations demonstrate a remarkable increase in ion energy by a few hundreds of MeV; the maximum proton energy reaches 254MeV.
122 - J.F. Qu , X. F. Li , X. Y. Liu 2019
Backward terahertz radiation can be produced by a high-intensity laser normally incident upon an underdense plasma. It is found that terahertz radiation is generated by electrons refluxing along the bubble shell. These shell electrons have similar dynamic trajectories and emit backward radiations to vacuum. This scheme has been proved through electron dynamic calculations as well as by using an ionic sphere model. In addition, the bubble shape is found to influence the radiation frequency, and this scheme can be implemented in both uniform and up-ramp density gradient plasma targets. The terahertz radiation may be used for diagnosing the electron bubble shape in the interaction between an intense laser and plasma. All results are presented via 2.5 dimensional particle-in-cell simulations.
Ion acceleration driven by superintense laser pulses is attracting an impressive and steadily increasing effort. Motivations can be found in the potential for a number of foreseen applications and in the perspective to investigate novel regimes as far as available laser intensities will be increasing. Experiments have demonstrated in a wide range of laser and target parameters the generation of multi-MeV proton and ion beams with unique properties such as ultrashort duration, high brilliance and low emittance. In this paper we give an overview of the state-of-the art of ion acceleration by laser pulses as well as an outlook on its future development and perspectives. We describe the main features observed in the experiments, the observed scaling with laser and plasma parameters and the main models used both to interpret experimental data and to suggest new research directions.
160 - Suo Tang , Naveen Kumar 2018
We develop an analytical model for ultraintense attosecond pulse emission in the highly relativistic laser-plasma interaction. In this model, the attosecond pulse is emitted by a strongly compressed electron layer around the instant when the layer transverse current changes the sign and its longitudinal velocity approaches the maximum. The emitted attosecond pulse has a broadband exponential spectrum and a stabilized constant spectral phase $psi(omega)=pmpi/2-psi_{A_m}$. The waveform of the attosecond pulse is also given explicitly, to our knowledge, for the first time. We validate the analytical model via particle-in-cell (PIC) simulations for both normal and oblique incidence. Based on this model, we highlight the potential to generate an isolated ultraintense phase-stabilized attosecond pulse
A density perturbation produced in an underdense plasma was used to improve the quality of electron bunches produced in the laser-plasma wakefield acceleration scheme. Quasi-monoenergetic electrons were generated by controlled injection in the longitudinal density gradients of the density perturbation. By tuning the position of the density perturbation along the laser propagation axis, a fine control of the electron energy from a mean value of 60 MeV to 120 MeV has been demonstrated with a relative energy-spread of 15 +/- 3.6%, divergence of 4 +/- 0.8 mrad and charge of 6 +/- 1.8 pC.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا