Do you want to publish a course? Click here

Derivation of general Maxwell type equations for open quantum systems

172   0   0.0 ( 0 )
 Added by Gurgen Adamian
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using equations of motion with the anisotropic dissipative term for quantum particle and quantum-mechanical commutation rules, the general Maxwell-type differential equations are derived. The direct modifications of the well-known Maxwell equations due to the medium effects (openness of the system) are discussed.



rate research

Read More

We provide a rigorous construction of Markovian master equations for a wide class of quantum systems that encompass quadratic models of finite size, linearly coupled to an environment modeled by a set of independent thermal baths. Our theory can be applied for both fermionic and bosonic models in any number of physical dimensions, and does not require any particular spatial symmetry of the global system. We show that, for non-degenerate systems under a full secular approximation, the effective Lindblad operators are the normal modes of the system, with coupling constants that explicitly depend on the transformation matrices that diagonalize the Hamiltonian. Both the dynamics and the steady-state (guaranteed to be unique) properties can be obtained with a polynomial amount of resources in the system size. We also address the particle and energy current flowing through the system in a minimal two-bath scheme and find that they hold the structure of Landauers formula, being thermodynamically consistent.
327 - Sebastien Boyaval 2017
We pursue here the development of models for complex (viscoelastic) fluids in shallow free-surface gravity flows which was initiated by [Bouchut-Boyaval, M3AS (23) 2013] for 1D (translation invariant) cases. The models we propose are hyperbolic quasilinear systems that generalize Saint-Venant shallow-water equations to incompressible Maxwell fluids. The models are compatible with a formulation of the thermo-dynamics second principle. In comparison with Saint-Venant standard shallow-water model, the momentum balance includes extra-stresses associated with an elastic potential energy in addition to a hydrostatic pressure. The extra-stresses are determined by an additional tensor variable solution to a differential equation with various possible time rates. For the numerical evaluation of solutions to Cauchy problems, we also propose explicit schemes discretizing our generalized Saint-Venant systems with Finite-Volume approximations that are entropy-consistent (under a CFL constraint) in addition to satisfy exact (discrete) mass and momentum conservation laws. In comparison with most standard viscoelastic numerical models, our discrete models can be used for any retardation-time values (i.e. in the vanishing solvent-viscosity limit). We finally illustrate our hyperbolic viscoelastic flow models numerically using computer simulations in benchmark test cases. On extending to Maxwell fluids some free-shear flow testcases that are standard benchmarks for Newtonian fluids, we first show that our (numerical) models reproduce well the viscoelastic physics, phenomenologically at least, with zero retardation-time. Moreover, with a view to quantitative evaluations, numerical results in the lid-driven cavity testcase show that, in fact, our models can be compared with standard viscoelastic flow models in sheared-flow benchmarks on adequately choosing the physical parameters of our models. Analyzing our models asymptotics should therefore shed new light on the famous High-Weissenberg Number Problem (HWNP), which is a limit for all the existing viscoelastic numerical models.
Open Quantum Walks (OQWs) are exclusively driven by dissipation and are formulated as completely positive trace preserving (CPTP) maps on underlying graphs. The microscopic derivation of discrete and continuous in time OQWs is presented. It is assumed that connected nodes are weakly interacting via a common bath. The resulting reduced master equation of the quantum walker on the lattice is in the generalised master equation form. The time discretisation of the generalised master equation leads to the OQWs formalism. The explicit form of the transition operators establishes a connection between dynamical properties of the OQWs and thermodynamical characteristics of the environment. The derivation is demonstrated for the examples of the OQW on a circle of nodes and on a finite chain of nodes. For both examples a transition between diffusive and ballistic quantum trajectories is observed and found to be related to the temperature of the bath.
75 - Yi Peng , Huaqiao Wang , Qiuju Xu 2021
By using a set of scaling limits, the authors in cite{ADFL,SS} proposed a framework of deriving the Hall-MHD equations from the two-fluids Euler-Maxwell equations for electrons and ions. In this paper, we derive the Hall-MHD equations from the Navier-Stokes-Maxwell equations with generalized Ohms law in a mathematically rigorous way via the spectral analysis and energy methods.
82 - H. A. Erbay , S. Erbay , A. Erkip 2016
In this paper we derive generalized forms of the Camassa-Holm (CH) equation from a Boussinesq-type equation using a two-parameter asymptotic expansion based on two small parameters characterizing nonlinear and dispersive effects and strictly following the arguments in the asymptotic derivation of the classical CH equation. The resulting equations generalize the CH equation in two different ways. The first generalization replaces the quadratic nonlinearity of the CH equation with a general power-type nonlinearity while the second one replaces the dispersive terms of the CH equation with fractional-type dispersive terms. In the absence of both higher-order nonlinearities and fractional-type dispersive effects, the generalized equations derived reduce to the classical CH equation that describes unidirectional propagation of shallow water waves. The generalized equations obtained are compared to similar equations available in the literature, and this leads to the observation that the present equations have not appeared in the literature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا