Do you want to publish a course? Click here

A Unified Approach for Solving Sequential Selection Problems

123   0   0.0 ( 0 )
 Added by Yaakov Malinovsky
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we develop a unified approach for solving a wide class of sequential selection problems. This class includes, but is not limited to, selection problems with no-information, rank-dependent rewards, and considers both fixed as well as random problem horizons. The proposed framework is based on a reduction of the original selection problem to one of optimal stopping for a sequence of judiciously constructed independent random variables. We demonstrate that our approach allows exact and efficient computation of optimal policies and various performance metrics thereof for a variety of sequential selection problems, several of which have not been solved to date.



rate research

Read More

We analyse an additive-increase and multiplicative-decrease (aka growth-collapse) process that grows linearly in time and that experiences downward jumps at Poisson epochs that are (deterministically) proportional to its present position. This process is used for example in modelling of Transmission Control Protocol (TCP) and can be viewed as a particular example of the so-called shot noise model, a basic tool in modeling earthquakes, avalanches and neuron firings. For this process, and also for its reflect
102 - Yinan Lin , Zhenhua Lin 2021
We develop a unified approach to hypothesis testing for various types of widely used functional linear models, such as scalar-on-function, function-on-function and function-on-scalar models. In addition, the proposed test applies to models of mixed types, such as models with both functional and scalar predictors. In contrast with most existing methods that rest on the large-sample distributions of test statistics, the proposed method leverages the technique of bootstrapping max statistics and exploits the variance decay property that is an inherent feature of functional data, to improve the empirical power of tests especially when the sample size is limited and the signal is relatively weak. Theoretical guarantees on the validity and consistency of the proposed test are provided uniformly for a class of test statistics.
299 - Xinjia Chen 2015
We propose a geometric approach for bounding average stopping times for stopped random walks in discrete and continuous time. We consider stopping times in the hyperspace of time indexes and stochastic processes. Our techniques relies on exploring geometric properties of continuity or stopping regions. Especially, we make use of the concepts of convex sets and supporting hyperplane. Explicit formulae and efficiently computable bounds are obtained for average stopping times. Our techniques can be applied to bound average stopping times involving random vectors, nonlinear stopping boundary, and constraints of time indexes. Moreover, we establish a stochastic characteristic of convex sets and generalize Jensens inequality, Walds equations and Lordens inequality, which are useful for investigating average stopping times.
195 - F. Hiai , D. Petz 2007
A new expression as a certain asymptotic limit via discrete micro-states of permutations is provided to the mutual information of both continuous and discrete random variables.
178 - Xinjia Chen 2013
We propose new generalized multivariate hypergeometric distributions, which extremely resemble the classical multivariate hypergeometric distributions. The proposed distributions are derived based on an urn model approach. In contrast to existing methods, this approach does not involve hypergeometric series.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا