No Arabic abstract
Much research effort has been devoted to developing methods for reconstructing the links of a network from dynamics of its nodes. Many current methods require the measurements of the dynamics of all the nodes be known. In real-world problems, it is common that either some nodes of a network of interest are unknown or the measurements of some nodes are unavailable. These nodes, either unknown or whose measurements are unavailable, are called hidden nodes. In this paper, we derive analytical results that explain the effects of hidden nodes on the reconstruction of bidirectional networks. These theoretical results and their implications are verified by numerical studies.
Recent studies show that in interdependent networks a very small failure in one network may lead to catastrophic consequences. Above a critical fraction of interdependent nodes, even a single node failure can invoke cascading failures that may abruptly fragment the system, while below this critical dependency (CD) a failure of few nodes leads only to small damage to the system. So far, the research has been focused on interdependent random networks without space limitations. However, many real systems, such as power grids and the Internet, are not random but are spatially embedded. Here we analytically and numerically analyze the stability of systems consisting of interdependent spatially embedded networks modeled as lattice networks. Surprisingly, we find that in lattice systems, in contrast to non-embedded systems, there is no CD and textit{any} small fraction of interdependent nodes leads to an abrupt collapse. We show that this extreme vulnerability of very weakly coupled lattices is a consequence of the critical exponent describing the percolation transition of a single lattice. Our results are important for understanding the vulnerabilities and for designing robust interdependent spatial embedded networks.
We introduce and study random bipartite networks with hidden variables. Nodes in these networks are characterized by hidden variables which control the appearance of links between node pairs. We derive analytic expressions for the degree distribution, degree correlations, the distribution of the number of common neighbors, and the bipartite clustering coefficient in these networks. We also establish the relationship between degrees of nodes in original bipartite networks and in their unipartite projections. We further demonstrate how hidden variable formalism can be applied to analyze topological properties of networks in certain bipartite network models, and verify our analytical results in numerical simulations.
The problem of reconstructing and identifying intracellular protein signaling and biochemical networks is of critical importance in biology today. We sought to develop a mathematical approach to this problem using, as a test case, one of the most well-studied and clinically important signaling networks in biology today, the epidermal growth factor receptor (EGFR) driven signaling cascade. More specifically, we suggest a method, augmented sparse reconstruction, for the identification of links among nodes of ordinary differential equation (ODE) networks from a small set of trajectories with different initial conditions. Our method builds a system of representation by using a collection of integrals of all given trajectories and by attenuating block of terms in the representation itself. The system of representation is then augmented with random vectors, and minimization of the 1-norm is used to find sparse representations for the dynamical interactions of each node. Augmentation by random vectors is crucial, since sparsity alone is not able to handle the large error-in-variables in the representation. Augmented sparse reconstruction allows to consider potentially very large spaces of models and it is able to detect with high accuracy the few relevant links among nodes, even when moderate noise is added to the measured trajectories. After showing the performance of our method on a model of the EGFR protein network, we sketch briefly the potential future therapeutic applications of this approach.
We propose a novel algorithm that outputs the final standings of a soccer league, based on a simple dynamics that mimics a soccer tournament. In our model, a team is created with a defined potential(ability) which is updated during the tournament according to the results of previous games. The updated potential modifies a teams future winning/losing probabilities. We show that this evolutionary game is able to reproduce the statistical properties of final standings of actual editions of the Brazilian tournament (Brasileir~{a}o). However, other leagues such as the Italian and the Spanish tournaments have notoriously non-Gaussian traces and cannot be straightforwardly reproduced by this evolutionary non-Markovian model. A complete understanding of these phenomena deserves much more attention, but we suggest a simple explanation based on data collected in Brazil: Here several teams were crowned champion in previous editions corroborating that the champion typically emerges from random fluctuations that partly preserves the gaussian traces during the tournament. On the other hand, in the Italian and Spanish leagues only a few teams in recent history have won their league tournaments. These leagues are based on more robust and hierarchical structures established even before the beginning of the tournament. For the sake of completeness, we also elaborate a totally Gaussian model (which equalizes the winning, drawing, and losing probabilities) and we show that the scores of the Brasileir~{a}o cannot be reproduced. Such aspects stress that evolutionary aspects are not superfluous in our modeling. Finally, we analyse the distortions of our model in situations where a large number of teams is considered, showing the existence of a transition from a single to a double peaked histogram of the final classification scores. An interesting scaling is presented for different sized tournaments.
The design of reliable indicators to anticipate critical transitions in complex systems is an im portant task in order to detect a coming sudden regime shift and to take action in order to either prevent it or mitigate its consequences. We present a data-driven method based on the estimation of a parameterized nonlinear stochastic differential equation that allows for a robust anticipation of critical transitions even in the presence of strong noise levels like they are present in many real world systems. Since the parameter estimation is done by a Markov Chain Monte Carlo approach we have access to credibility bands allowing for a better interpretation of the reliability of the results. By introducing a Bayesian linear segment fit it is possible to give an estimate for the time horizon in which the transition will probably occur based on the current state of information. This approach is also able to handle nonlinear time dependencies of the parameter controlling the transition. In general the method could be used as a tool for on-line analysis to detect changes in the resilience of the system and to provide information on the probability of the occurrence of a critical transition in future.