No Arabic abstract
Circumbinary disks are common around post-asymptotic giant branch (post-AGB) stars with a stellar companion on orbital time scales of a few 100 to few 1000 days. The presence of a disk is usually inferred from the systems spectral energy distribution (SED), and confirmed, for a sub-sample, by interferometric observations. We used the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument on the Very Large Telescope to obtain extreme adaptive optics assisted scattered light images of the post-AGB binary system AR Puppis. Data have been obtained in the V, I, and H bands. Our observations have produced the first resolved images of AR Puppis circumbinary disk and confirm its edge-on orientation. In our high angular-resolution and high dynamic-range images we identify several structural components such as a dark mid-plane, the disk surface, and arc-like features. We discuss the nature of these components and use complementary photometric monitoring to relate them to the orbital phase of the binary system. Because the star is completely obscured by the disk at visible wavelengths, we conclude that the long-term photometric variability of the system must be caused by variable scattering, not extinction, of star light by the disk over the binary orbit. Finally, we discuss how the short disk life times and fast evolution of the host stars compared to the ages at which protoplanetary disks are typically observed make systems like AR Puppis valuable extreme laboratories to study circumstellar disk evolution and constrain the time scale of dust grain growth during the planet formation process.
We present Herschel far-infrared and submillimeter maps of the debris disk associated with the HR 8799 planetary system. We resolve the outer disk emission at 70, 100, 160 and 250 um and detect the disk at 350 and 500 um. A smooth model explains the observed disk emission well. We observe no obvious clumps or asymmetries associated with the trapping of planetesimals that is a potential consequence of planetary migration in the system. We estimate that the disk eccentricity must be <0.1. As in previous work by Su et al. (2009), we find a disk with three components: a warm inner component and two outer components, a planetesimal belt extending from 100 - 310 AU, with some flexibility (+/- 10 AU) on the inner edge, and the external halo which extends to ~2000 AU. We measure the disk inclination to be 26 +/- 3 deg from face-on at a position angle of 64 deg E of N, establishing that the disk is coplanar with the star and planets. The SED of the disk is well fit by blackbody grains whose semi-major axes lie within the planetesimal belt, suggesting an absence of small grains. The wavelength at which the spectrum steepens from blackbody, 47 +/- 30 um, however, is short compared to other A star debris disks, suggesting that there are atypically small grains likely populating the halo. The PACS longer wavelength data yield a lower disk color temperature than do MIPS data (24 and 70 um), implying two distinct halo dust grain populations.
We present a suite of ALMA interferometric molecular line and continuum images that elucidate, on linear size scales of $sim$30--40 AU, the chemical structure of the nearby, evolved, protoplanetary disk orbiting the close binary system V4046 Sgr. The observations were undertaken in the 1.1--1.4 mm wavelength range (ALMA Bands 6 and 7) with antenna configurations involving maximum baselines of several hundred meters, yielding subarcsecond-resolution images in more than a dozen molecular species and isotopologues. Isotopologues of CO and HCN display centrally peaked morphologies of integrated emission line intensity, whereas the line emission from complex nitrile group molecules (HC$_3$N, CH$_3$CN), deuterated molecules (DCN, DCO$^+$), hydrocarbons (as traced by C$_2$H), and potential CO ice line tracers (N$_2$H$^+$, and H$_2$CO) appears as a sequence of sharp and diffuse rings. The dimensions and morphologies of HC$_3$N and CH$_3$CN emission are suggestive of photodesorption of organic ices from the surfaces of dust grains, while the sequence of increasing radius of peak intensity represented by DCN (smallest), DCO$^+$, N$_2$H$^+$, and H$_2$CO (largest) is qualitatively consistent with the expected decline of midplane gas temperature with increasing disk radius. Empirical modeling indicates that the sharp-edged C$_2$H emission ring lies at relatively deep disk layers, leaving open the question of the origin of C$_2$H abundance enhancements in evolved disks. This study of the molecular anatomy of V4046 Sgr should serve as motivation for additional subarcsecond ALMA molecular line imaging surveys of nearby, evolved protoplanetary disks aimed at addressing major uncertainties in protoplanetary disk physical and chemical structure and molecular production pathways.
High-mass multiples might form via fragmentation of self-gravitational disks or alternative scenarios such as disk-assisted capture. However, only few observational constraints exist on the architecture and disk structure of high-mass protobinaries and their accretion properties. Here we report the discovery of a close ($57.9pm0.2$mas=170au) high-mass protobinary, IRAS17216-3801, where our VLTI/GRAVITY+AMBER near-infrared interferometry allows us to image the circumstellar disks around the individual components with 3 milliarcsecond resolution. We estimate the component masses to $sim20$ and $sim18 M_{odot}$ and find that the radial intensity profiles can be reproduced with an irradiated disk model, where the inner regions are excavated of dust, likely tracing the dust sublimation region in these disks. The circumstellar disks are strongly misaligned with respect to the binary separation vector, which indicates that the tidal forces did not have time to realign the disks, pointing towards a young dynamical age of the system. We constrain the distribution of the Br$gamma$ and CO-emitting gas using VLTI/GRAVITY spectro-interferometry and VLT/CRIRES spectro-astrometry and find that the secondary is accreting at a higher rate than the primary. VLT/NACO imaging shows $L$-band emission on 3-4 times larger scales than the binary separation, matching the expected dynamical truncation radius for the circumbinary disk. The IRAS17216-3801 system is $sim3times$ more massive and $sim5times$ more compact than other high-mass multiplies imaged at infrared wavelengths and the first high-mass protobinary system where circumstellar and circumbinary dust disks could be spatially resolved. This opens exciting new opportunities for studying star-disk interactions and the role of multiplicity in high-mass star formation.
We present far-infrared and submillimeter maps from the Herschel Space Observatory and the James Clerk Maxwell Telescope of the debris disk host star AU Microscopii. Disk emission is detected at 70, 160, 250, 350, 450, 500 and 850 micron. The disk is resolved at 70, 160 and 450 micron. In addition to the planetesimal belt, we detect thermal emission from AU Mics halo for the first time. In contrast to the scattered light images, no asymmetries are evident in the disk. The fractional luminosity of the disk is $3.9 times 10^{-4}$ and its mm-grain dust mass is 0.01 MEarth (+/- 20%). We create a simple spatial model that reconciles the disk SED as a blackbody of 53 +/- 2 K (a composite of 39 and 50 K components) and the presence of small (non-blackbody) grains which populate the extended halo. The best fit model is consistent with the birth ring model explored in earlier works, i.e., an edge-on dust belt extending from 8.8-40 AU, but with an additional halo component with an $r^{-1.5}$ surface density profile extending to the limits of sensitivity (140 AU). We confirm that AU Mic does not exert enough radiation force to blow out grains. For stellar mass loss rates of 10-100x solar, compact (zero porosity) grains can only be removed if they are very small, consistently with previous work, if the porosity is 0.9, then grains approaching 0.1 micron can be removed via corpuscular forces (i.e., the stellar wind).
We present far-infrared and sub-millimeter images of the eta Crv debris disk system obtained with Herschel and SCUBA-2, as well as Hubble Space Telescope visible and near-infrared coronagraphic images. In the 70 micron Herschel image, we clearly separate the thermal emission from the warm and cold belts in the system, find no evidence for a putative dust population located between them, and precisely determine the geometry of the outer belt. We also find marginal evidence for azimuthal asymmetries and a global offset of the outer debris ring relative to the central star. Finally, we place stringent upper limits on the scattered light surface brightness of the outer ring. Using radiative transfer modeling, we find that it is impossible to account for all observed properties of the system under the assumption that both rings contain dust populations with the same properties. While the outer belt is in reasonable agreement with the expectations of steady-state collisional cascade models, albeit with a minimum grain size that is four times larger than the blow-out size, the inner belt appears to contain copious amounts of small dust grains, possibly below the blow-out size. This suggests that the inner belt cannot result from a simple transport of grains from the outer belt and rather supports a more violent phenomenon as its origin. We also find that the emission from the inner belt has not declined over three decades, a much longer timescale than its dynamical timescale, which indicates that the belt is efficiently replenished.