Small cycles, generalized prisms and Hamiltonian cycles in the Bubble-sort graph


Abstract in English

The Bubble-sort graph $BS_n,,ngeqslant 2$, is a Cayley graph over the symmetric group $Sym_n$ generated by transpositions from the set ${(1 2), (2 3),ldots, (n-1 n)}$. It is a bipartite graph containing all even cycles of length $ell$, where $4leqslant ellleqslant n!$. We give an explicit combinatorial characterization of all its $4$- and $6$-cycles. Based on this characterization, we define generalized prisms in $BS_n,,ngeqslant 5$, and present a new approach to construct a Hamiltonian cycle based on these generalized prisms.

Download