Do you want to publish a course? Click here

The corona contracts in a black-hole transient

67   0   0.0 ( 0 )
 Added by Erin Kara
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The geometry of the accretion flow around stellar-mass black holes can change on timescales of days to months. When a black hole emerges from quiescence (that is, it turns on after accreting material from its companion) it has a very hard (high-energy) X-ray spectrum produced by a hot corona positioned above its accretion disk, and then transitions to a soft (lower-energy) spectrum dominated by emission from the geometrically thin accretion disk, which extends to the innermost stable circular orbit. Much debate persists over how this transition occurs and whether it is driven largely by a reduction in the truncation radius of the disk or by a reduction in the spatial extent of the corona. Observations of X-ray reverberation lags in supermassive black-hole systems suggest that the corona is compact and that the disk extends nearly to the central black hole. Observations of stellar-mass black holes, however, reveal equivalent (mass-scaled) reverberation lags that are much larger, leading to the suggestion that the accretion disk in the hard X-ray state of stellar-mass black holes is truncated at a few hundreds of gravitational radii from the black hole. Here we report X-ray observations of the black-hole transient MAXI J1820+070. We find that the reverberation time lags between the continuum-emitting corona and the irradiated accretion disk are 6 to 20 times shorter than previously seen. The timescale of the reverberation lags shortens by an order of magnitude over a period of weeks, whereas the shape of the broadened iron K emission line remains remarkably constant. This suggests a reduction in the spatial extent of the corona, rather than a change in the inner edge of the accretion disk.



rate research

Read More

X-ray reverberation echoes are assumed to be produced in the strongly distorted spacetime around accreting supermassive black holes. This signal allows us to spatially map the geometry of the inner accretion flow - a region which cannot yet be spatially resolved by any telescope - and provides a direct measure of the black hole mass and spin. The reverberation timescale is set by the light travel path between the direct emission from a hot X-ray corona and the reprocessed emission from the inner edge of the accretion disc. However, there is an inherent degeneracy in the reverberation signal between black hole mass, inner disc radius and height of the illuminating corona above the disc. Here, we use a long X-ray observation of the highly-variable active galaxy, IRAS 13224-3809, to track the reverberation signal as the system evolves on timescales of a day. With the inclusion of all the relativistic effects, modelling reveals that the height of the X-ray corona increases with increasing luminosity, providing a dynamic view of the inner accretion region. This simultaneous modelling allows us to break the inherent degeneracies and obtain an independent timing-based estimate for the mass and spin of the black hole. The uncertainty on black hole mass is comparable to the leading optical reverberation method, making X-ray reverberation a powerful technique, particularly for sources with low optical variability.
We present intermediate resolution spectroscopy of the optical counterpart to the black hole X-ray transient MAXI J1820+070 (=ASASSN-18ey) obtained with the OSIRIS spectrograph on the 10.4-m Gran Telescopio Canarias. The observations were performed with the source close to the quiescent state and before the onset of renewed activity in August 2019. We make use of these data and K-type dwarf templates taken with the same instrumental configuration to measure the projected rotational velocity of the donor star. We find $v_{rot} sin i = 84 pm 5$ km s$^{-1}$ ($1!-!sigma$), which implies a donor to black-hole mass ratio $q = {M_2}/{M_1} = 0.072 pm 0.012$ for the case of a tidally locked and Roche-lobe filling donor star. The derived dynamical masses for the stellar components are $M_1 = (5.95 pm 0.22)sin ^{-3}i$ $M_odot$ and $M_2 = (0.43 pm 0.08) sin^{-3}i$ $M_odot$. The use of $q$, combined with estimates of the accretion disk size at the time of the optical spectroscopy, allows us to revise our previous orbital inclination constraints to $66^{circ} < i < 81^{circ}$. These values lead to 95% confidence level limits on the masses of $5.73 <M_1(M_odot) < 8.34$ and $0.28 < M_2(M_odot) < 0.77$. Adopting instead the $63 pm 3^{circ}$ orientation angle of the radio jet as the binary inclination leads to $M_1 = 8.48^{+0.79}_{-0.72} M_odot$ and $M_2 = 0.61^{+0.13}_{-0.12} M_odot$ ($1!-!sigma$).
Accretion flows toward black holes can be of a quite different nature, described as an optically thick cool gas flow in a disk for high accretion rates or as a hot coronal optically thin gas flow for low accretion rates, possibly affected by outflowing gas. The detection of broad iron emission lines in active galactic nuclei (AGN) indicates the coexistence of corona and disk. The appearance and relative strength of such flows essentially depends on their interaction. Liu et al. suggested that condensation of gas from the corona to the disk allows to understand accretion flows of comparable strength of emission. Matter inflow due to gravitational capture of gas is important for the condensation process. We discuss observational features predicted by the model. Data from simultaneous observations of AGN with {it {Swifts}} X-ray and UV-optical telescopes are compared with the theoretical predictions. The frequent detection of broad iron K$alpha$ emission lines and the dependence of the emitted spectra on the Eddington ratio, described by the values of the photon index $Gamma$ and the two-point spectral index $alpha_{rm{ox}}$ are in approximate agreement with the predictions of the condensation model; the latter, however, with a large scatter. The model further yields a coronal emission concentrated in a narrow inner region as is also deduced from the analysis of emissivity profiles. The accretion flows in bright AGN could be described by the accretion of stellar wind or interstellar medium and its condensation into a thin disk.
When a star passes within the tidal radius of a supermassive black hole, it will be torn apart. For a star with the mass of the Sun ($M_odot$) and a non-spinning black hole with a mass $<10^8 M_odot$, the tidal radius lies outside the black hole event horizon and the disruption results in a luminous flare. Here we report observations over a period of 10 months of a transient, hitherto interpreted as a superluminous supernova. Our data show that the transient rebrightened substantially in the ultraviolet and that the spectrum went through three different spectroscopic phases without ever becoming nebular. Our observations are more consistent with a tidal disruption event than a superluminous supernova because of the temperature evolution, the presence of highly ionised CNO gas in the line of sight and our improved localisation of the transient in the nucleus of a passive galaxy, where the presence of massive stars is highly unlikely. While the supermassive black hole has a mass $> 10^8 M_odot$, a star with the same mass as the Sun could be disrupted outside the event horizon if the black hole were spinning rapidly. The rapid spin and high black hole mass can explain the high luminosity of this event.
We report the first half-year monitoring of the new Galactic black hole candidate MAXI J1348-630, discovered on 2019 January 26 with the Gas Slit Camera (GSC) on-board MAXI. During the monitoring period, the source exhibited two outburst peaks, where the first peak flux (at T=14 day from the discovery of T =0) was ~4 Crab (2-20 keV) and the second one (at T =132 day) was ~0.4 Crab (2-20 keV). The source exhibited distinct spectral transitions between the high/soft and low/hard states and an apparent q-shape curve on the hardness-intensity diagram, both of which are well-known characteristics of black hole binaries. Compared to other bright black hole transients, MAXI J1348-630 is characterized by its low disk-temperature (~0.75 keV at the maximum) and high peak flux in the high/soft state. The low peak-temperature leads to a large innermost radius that is identified as the Innermost Stable Circular Orbit (ISCO), determined by the black hole mass and spin. Assuming the empirical relation between the soft-to-hard transition luminosity (Ltrans) and the Eddington luminosity (LEdd), Ltrans/LEdd ~ 0.02, and a face-on disk around a non-spinning black hole, the source distance and the black hole mass are estimated to be D ~ 4 kpc and ~7 (D/4 kpc) Mo, respectively. The black hole is more massive if the disk is inclined and the black hole is spinning. These results suggest that MAXI J1348-630 may host a relatively massive black hole among the known black hole binaries in our Galaxy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا