The effect of a Chern-Simons term on dynamical gap generation in graphene


Abstract in English

We study the effect of a Chern-Simons term on dynamical gap generation in a low energy effective theory that describes some features of mono-layer suspended graphene. We use a non-perturbative Schwinger-Dyson approach. We solve a set of coupled integral equations for eight independent dressing functions that describe fermion and photon degrees of freedom. We find a strong suppression of the gap, and corresponding increase in the critical coupling, as a function of increasing Chern-Simons coefficient.

Download