Do you want to publish a course? Click here

Performance Analysis of Receive Antenna Selection in Multi-Antenna Systems under Finite Constellation Size

149   0   0.0 ( 0 )
 Added by Chongjun Ouyang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Antenna selection (AS) is regarded as one of the most prospective technologies to reduce hardware cost but keep relatively high spectral efficiency in multi-antenna systems. By selecting a subset of antennas to transceive messages, AS greatly alleviates the requirement on RF chains. This paper studies receive antenna selection in single-input multiple-output (SIMO) systems, namely the antenna-selection SIMO (AS-SIMO) systems, from the perspective of digital modulation. The receiver, equipped with multiple antennas, selects an optimal antenna subset to receive messages from the single-antenna transmitter. By assuming independent and identical distributed (i.i.d) flat fading Rayleigh channels, we first analyze the input-output mutual information, also referred as symmetric capacity, of AS-SIMO systems when the modulation style is BPSK/QPSK/16QAM. To reduce the computation complexity of the capacity, closed-form approximated expressions of the symmetric capacity based on asymptotic theory are given for the first time to approach the exact results. Compared with the conventional derivations, our approximation holds much lower computation complexity with the guarantee of high precision. Next, this asymptotic approximation technique is extended to estimate the symbol error rate (SER) of antenna-selection SIMO systems and approximated expressions for SER are proposed which indicates much lower complexity. Finally, a special scenario of single-antenna-selection is detailedly investigated and series expressions of the symmetric capacity are formulated for the first time. Beside analytical derivations, simulation results are provided to demonstrate the approximation precision of the derived results. Experiment results show that the asymptotic theory has a remarkable approximation effect.



rate research

Read More

In this paper, outage probability (OP) of a joint transmit and receive antenna selection (JTRAS) scheme is analyzed in multiple-input multiple-output non orthogonal multiple access based downlink energy harvesting (EH) relaying networks. In this dual-hop and amplify-and-forward relaying based network, since the first and second hops are types of single-user and multi-user systems, respectively, the optimal JTRAS and suboptimal majority-based JTRAS schemes are employed in the first and second hops. The theoretical OP analysis is carried out over Nakagami-m fading channels in the cases of perfect and imperfect successive interference cancellation. Finally, Monte Carlo simulations are performed to substantiate the accuracy of the theoretical analysis. It is shown that the optimal power splitting ratios at the EH relay are different for users and the users with good channel conditions have minimum optimal ratios.
Increasing the number of transmit and receive elements in multiple-input-multiple-output (MIMO) antenna arrays imposes a substantial increase in hardware and computational costs. We mitigate this problem by employing a reconfigurable MIMO array where large transmit and receive arrays are multiplexed in a smaller set of k baseband signals. We consider four stages for the MIMO array configuration and propose four different selection strategies to offer dimensionality reduction in post-processing and achieve hardware cost reduction in digital signal processing (DSP) and radio-frequency (RF) stages. We define the problem as a determinant maximization and develop a unified formulation to decouple the joint problem and select antennas/elements in various stages in one integrated problem. We then analyze the performance of the proposed selection approaches and prove that, in terms of the output SINR, a joint transmit-receive selection method performs best followed by matched-filter, hybrid and factored selection methods. The theoretical results are validated numerically, demonstrating that all methods allow an excellent trade-off between performance and cost.
To improve national security, government agencies have long been committed to enforcing powerful surveillance measures on suspicious individuals or communications. In this paper, we consider a wireless legitimate surveillance system, where a full-duplex multi-antenna legitimate monitor aims to eavesdrop on a dubious communication link between a suspicious pair via proactive jamming. Assuming that the legitimate monitor can successfully overhear the suspicious information only when its achievable data rate is no smaller than that of the suspicious receiver, the key objective is to maximize the eavesdropping non-outage probability by joint design of the jamming power, receive and transmit beamformers at the legitimate monitor. Depending on the number of receive/transmit antennas implemented, i.e., single-input single-output, single-input multiple-output, multiple-input single-output and multiple-input multiple-output (MIMO), four different scenarios are investigated. For each scenario, the optimal jamming power is derived in closed-form and efficient algorithms are obtained for the optimal transmit/receive beamforming vectors. Moreover, low-complexity suboptimal beamforming schemes are proposed for the MIMO case. Our analytical findings demonstrate that by exploiting multiple antennas at the legitimate monitor, the eavesdropping non-outage probability can be significantly improved compared to the single antenna case. In addition, the proposed suboptimal transmit zero-forcing scheme yields similar performance as the optimal scheme.
This paper studies the secrecy performance of multiple-input multiple-output (MIMO) wiretap channels, also termed as multiple-input multiple-output multiple-eavesdropper (MIMOME) channels, under transmit antenna selection (TAS) and BPSK/QPSK modulations. In the main channel between the transmitter and the legitimate receiver, a single transmit antenna is selected to maximizes the instantaneous Signal to Noise Ratio (SNR) at the receiver. At the receiver and the eavesdropper, selection combination (SC) is utilized. By assuming Rayleigh flat fading, we first derive the closed-form approximated expression for the ergodic secrecy rate when the channel state information of the eavesdropper (CSIE) is available at the transmitter. Next, analytical formulas for the approximated and asymptotic secrecy outage probability (SOP) are also developed when CSIE is unavailable. Besides theoretical derivations, simulation results are provided to demonstrate the approximation precision of the derived results. Furthermore, the asymptotic results reveal that the secrecy diversity order degrades into 0 due to the finitealphabet inputs, which is totally different from that driven by the Gaussian inputs.
99 - Lin Liu , Guiyang Xia , Jun Zou 2020
In this paper, we make an investigation of receive antenna selection (RAS) strategies in the secure pre-coding aided spatial modulation (PSM) system with the aid of artificial noise. Due to a lack of the closed-form expression for secrecy rate (SR) in secure PSM systems, it is hard to optimize the RAS. To address this issue, the cut-off rate is used as an approximation of the SR. Further, two low-complexity RAS schemes for maximizing SR, called Max-SR-L and Max-SR-H, are derived in the low and high signal-to-noise ratio (SNR) regions, respectively. Due to the fact that the former works well in the low SNR region but becomes worse in the medium and high SNR regions while the latter also has the similar problem, a novel RAS strategy Max-SR-A is proposed to cover all SNR regions. Simulation results show that the proposed Max-SR-H and Max-SR-L schemes approach the optimal SR performances of the exhaustive search (ES) in the high and low SNR regions, respectively. In particular, the SR performance of the proposed Max-SR-A is close to that of the optimal ES and better than that of the random method in almost all SNR regions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا