Do you want to publish a course? Click here

Dual MeV Gamma-Ray and Dark Matter Observatory -- GRAMS Project

65   0   0.0 ( 0 )
 Added by Tsuguo Aramaki
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

GRAMS (Gamma-Ray and AntiMatter Survey) is a novel project that can simultaneously target both astrophysical observations with MeV gamma rays and an indirect dark matter search with antimatter. The GRAMS instrument is designed with a cost-effective, large-scale LArTPC (Liquid Argon Time Projection Chamber) detector surrounded by plastic scintillators. The astrophysical observations at MeV energies have not yet been well-explored (the so-called MeV-gap) and GRAMS can improve the sensitivity by more than an order of magnitude compared to previous experiments. While primarily focusing on MeV gamma-ray observations, GRAMS is also optimized for cosmic ray antimatter surveys to indirectly search for dark matter. In particular, low-energy antideuterons will provide an essentially background-free dark matter signature. GRAMS will be a next generation experiment beyond the current GAPS (General AntiParticle Spectrometer) project for antimatter survey.



rate research

Read More

The Gamma-Ray and AntiMatter Survey (GRAMS) project is a proposed next-generation balloon/satellite mission targeting both MeV gamma-ray observations and antimatter-based dark matter searches. A cost-effective, large-scale Liquid Argon Time Projection Chamber (LArTPC) detector technology will allow GRAMS to have a significantly improved sensitivity to MeV gamma rays while extensively probing dark matter parameter space via antimatter measurements.
Despite mounting evidence that dark matter (DM) exists in the Universe, its fundamental nature remains unknown. We present sensitivity estimates to detect DM particles with a future very-high-energy ($gtrsim$ TeV) wide field-of-view gamma-ray observatory in the Southern Hemisphere. This observatory would search for gamma rays from the annihilation or decay of DM particles in the Galactic halo. With a wide field of view, both the Galactic Center and a large fraction of the Galactic halo will be detectable with unprecedented sensitivity to DM in the mass range of $sim$500 GeV to $sim$2 PeV. These results, combined with those from other present and future gamma-ray observatories, will likely probe the thermal relic annihilation cross section of Weakly Interacting Massive Particles for all masses from $sim$80 TeV down to the GeV range in most annihilation channels.
The High-Altitude Water Cherenkov Gamma Ray Observatory (HAWC) is designed to perform a synoptic survey of the TeV sky. The high energy coverage of the experiment will enable studies of fundamental physics beyond the Standard Model, and the large field of view of the detector will enable detailed studies of cosmologically significant backgrounds and magnetic fields. We describe the sensitivity of the full HAWC array to these phenomena in five contributions shown at the 33rd International Cosmic Ray Conference in Rio de Janeiro, Brazil (July 2013).
139 - A. Albert , R. Alfaro , C. Alvarez 2017
The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field of view observatory sensitive to 500 GeV - 100 TeV gamma rays and cosmic rays. It can also perform diverse indirect searches for dark matter (DM) annihilation and decay. Among the most promising targets for the indirect detection of dark matter are dwarf spheroidal galaxies. These objects are expected to have few astrophysical sources of gamma rays but high dark matter content, making them ideal candidates for an indirect dark matter detection with gamma rays. Here we present individual limits on the annihilation cross section and decay lifetime for 15 dwarf spheroidal galaxies within the HAWC field-of-view, as well as their combined limit. These are the first limits on the annihilation cross section and decay lifetime using data collected with HAWC.
The astrophysics community is considering plans for a variety of gamma-ray telescopes (including ACT and GRIPS) in the energy range 1--100 MeV, which can fill in the so-called MeV gap in current sensitivity. We investigate the utility of such detectors for the study of low-mass dark matter annihilation or decay. For annihilating (decaying) dark matter with a mass below about 140 MeV (280 MeV) and couplings to first generation quarks, the final states will be dominated by photons or neutral pions, producing striking signals in gamma-ray telescopes. We determine the sensitivity of future detectors to the kinematically allowed final states. In particular, we find that planned detectors can improve on current sensitivity to this class of models by up to a few orders of magnitude.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا