We study a class of determinantal ideals that are related to conditional independence (CI) statements with hidden variables. Such CI statements correspond to determinantal conditions on a matrix whose entries are probabilities of events involving the observed random variables. We focus on an example that generalizes the CI ideals of the intersection axiom. In this example, the minimal primes are again determinantal ideals, which is not true in general.
We introduce binomial edge ideals attached to a simple graph $G$ and study their algebraic properties. We characterize those graphs for which the quadratic generators form a Grobner basis in a lexicographic order induced by a vertex labeling. Such graphs are chordal and claw-free. We give a reduced squarefree Grobner basis for general $G$. It follows that all binomial edge ideals are radical ideals. Their minimal primes can be characterized by particular subsets of the vertices of $G$. We provide sufficient conditions for Cohen--Macaulayness for closed and nonclosed graphs. Binomial edge ideals arise naturally in the study of conditional independence ideals. Our results apply for the class of conditional independence ideals where a fixed binary variable is independent of a collection of other variables, given the remaining ones. In this case the primary decomposition has a natural statistical interpretation
We propose a general new method, the conditional permutation test, for testing the conditional independence of variables $X$ and $Y$ given a potentially high-dimensional random vector $Z$ that may contain confounding factors. The proposed test permutes entries of $X$ non-uniformly, so as to respect the existing dependence between $X$ and $Z$ and thus account for the presence of these confounders. Like the conditional randomization test of Cand`es et al. (2018), our test relies on the availability of an approximation to the distribution of $X mid Z$. While Cand`es et al. (2018)s test uses this estimate to draw new $X$ values, for our test we use this approximation to design an appropriate non-uniform distribution on permutations of the $X$ values already seen in the true data. We provide an efficient Markov Chain Monte Carlo sampler for the implementation of our method, and establish bounds on the Type I error in terms of the error in the approximation of the conditional distribution of $Xmid Z$, finding that, for the worst case test statistic, the inflation in Type I error of the conditional permutation test is no larger than that of the conditional randomization test. We validate these theoretical results with experiments on simulated data and on the Capital Bikeshare data set.
Lattice Conditional Independence models are a class of models developed first for the Gaussian case in which a distributive lattice classifies all the conditional independence statements. The main result is that these models can equivalently be described via a transitive acyclic graph (TDAG) in which, as is normal for causal models, the conditional independence is in terms of conditioning on ancestors in the graph. We aim to demonstrate that a parallel stream of research in algebra, the theory of Hibi ideals, not only maps directly to the LCI models but gives a vehicle to generalise the theory from the linear Gaussian case. Given a distributive lattice (i) each conditional independence statement is associated with a Hibi relation defined on the lattice, (ii) the directed graph is given by chains in the lattice which correspond to chains of conditional independence, (iii) the elimination ideal of product terms in the chains gives the Hibi ideal and (iv) the TDAG can be recovered from a special bipartite graph constructed via the Alexander dual of the Hibi ideal. It is briefly demonstrated that there are natural applications to statistical log-linear models, time series, and Shannon information flow.
Researchers are often interested in treatment effects on outcomes that are only defined conditional on a post-treatment event status. For example, in a study of the effect of different cancer treatments on quality of life at end of follow-up, the quality of life of individuals who die during the study is undefined. In these settings, a naive contrast of outcomes conditional on the post-treatment variable is not an average causal effect, even in a randomized experiment. Therefore the effect in the principal stratum of those who would have the same value of the post-treatment variable regardless of treatment, such as the always survivors in a truncation by death setting, is often advocated for causal inference. While this principal stratum effect is a well defined causal contrast, it is often hard to justify that it is relevant to scientists, patients or policy makers, and it cannot be identified without relying on unfalsifiable assumptions. Here we formulate alternative estimands, the conditional separable effects, that have a natural causal interpretation under assumptions that can be falsified in a randomized experiment. We provide identification results and introduce different estimators, including a doubly robust estimator derived from the nonparametric influence function. As an illustration, we estimate a conditional separable effect of chemotherapies on quality of life in patients with prostate cancer, using data from a randomized clinical trial.
Let $S_n$ be a polynomial ring with $n$ variables over a field and ${I_n}_{n geq 1}$ a chain of ideals such that each $I_n$ is a monomial ideal of $S_n$ fixed by permutations of the variables. In this paper, we present a way to determine all nonzero positions of Betti tables of $I_n$ for all large intergers $n$ from the $mathbb Z^m$-graded Betti table of $I_m$ for some integer $m$. Our main result shows that the projective dimension and the regularity of $I_n$ eventually become linear functions on $n$, confirming a special case of conjectures posed by Le, Nagel, Nguyen and Romer.