We study the band structure of twinned and detwinned BaFe$_2$As$_2$ using angle-resolved photoemission spectroscopy (ARPES). The combination of measurements in the ordered and normal state along four high-symmetry momentum directions $Gamma$/Z--X/Y enables us to identify the complex reconstructed band structure in the ordered state in great detail. We clearly observe the nematic splitting of the $d_{xz}$ and $d_{yz}$ orbitals as well as folding due to magnetic order with a wave vector of $(pi,pi,pi)$. We are able to assign all observed bands. In particular we suggest an assignment of the electron bands different from previous reports. The high quality spectra allow us to achieve a comprehensive understanding of the band structure of BaFe$_2$As$_2$.
We performed angle resolved photoelectron spectroscopy (ARPES) studies on mechanically detwinned BaFe2As2. We observe clear band dispersions and the shapes and characters of the Fermi surfaces are identified. Shapes of the two hole pockets around the {Gamma}-point are found to be consistent with the Fermi surface topology predicted in the orbital ordered states. Dirac-cone like band dispersions near the {Gamma}-point are clearly identified as theoretically predicted. At the X-point, split bands remain intact in spite of detwinning, barring twinning origin of the bands. The observed band dispersions are compared with calculated band structures. With a magnetic moment of 0.2 ?B per iron atom, there is a good agreement between the calculation and experiment.
We have performed high-resolution angle-resolved photoemission spectroscopy on heavily electron-doped non-superconducting (SC) BaFe$_{1.7}$Co$_{0.3}$As$_2$. We find that the two hole Fermi surface pockets at the zone center observed in the hole-doped superconducting Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ are absent or very small in this compound, while the two electron pockets at the M point significantly expand due to electron doping by the Co substitution. Comparison of the Fermi surface between non-SC and SC samples indicates that the coexistence of hole and electron pockets connected via the antiferromagnetic wave vector is essential in realizing the mechanism of superconductivity in the iron-based superconductors.
We investigated the nonequilibrium electronic structure of 2H-NbSe$_2$ by time- and angle-resolved photoemission spectroscopy. We find that the band structure is distinctively modulated by strong photo-excitation, as indicated by the unusual increase in the photoelectron intensities around E$_F$. In order to gain insight into the observed photo-induced electronic state, we performed DFT calculations with modulated lattice structures, and found that the variation of the Se height from the Nb layer results in a significant change in the effective mass and band gap energy. We further study the momentum-dependent carrier dynamics. The results suggest that the relaxation is faster at the K-centered Fermi surface than at the $Gamma$-centered Fermi surface, which can be attributed to the stronger electron-lattice coupling at the K-centered Fermi surface. Our demonstration of band structure engineering suggests a new role for light as a tool for controlling the functionalities of solid-state materials.
Understanding magnetic interactions in the parent compounds of high-temperature superconductors forms the basis for determining their role for the mechanism of superconductivity. For parent compounds of iron pnictide superconductors such as $A$Fe$_2$As$_2$ ($A=$ Ba, Ca, Sr), although spin excitations have been mapped out throughout the entire Brillouin zone (BZ), measurements were carried out on twinned samples and did not allow for a conclusive determination of the spin dynamics. Here we use inelastic neutron scattering to completely map out spin excitations of $sim$100% detwinned BaFe$_2$As$_2$. By comparing observed spectra with theoretical calculations, we conclude that the spin excitations can be well described by an itinerant model with important contributions from electronic correlations.
We present a comprehensive study of the low-energy band structure and Fermi surface (FS) topology of $A$Co$_2$As$_2$ ($A=$ Ca, Sr, Ba, Eu) using high-resolution angle-resolved photoemission spectroscopy. The experimental FS topology and band dispersion data are compared with theoretical full-potential linearized augmented-plane-wave (FP-LAPW) calculations, which yielded reasonably good agreement. We demonstrate that the FS maps of $A$Co$_2$As$_2$ are significantly different from those of the parent compounds of Fe-based high-temperature superconductors. Further, the FSs of CaCo$_2$As$_2$ do not show significant changes across its antiferromagnetic transition temperature. The band dispersions extracted in different momentum $(k_{it x}, k_{it y})$ directions show a small electron pocket at the center and a large electron pocket at the corner of the Brillouin zone (BZ). The absence of the hole FS in these compounds does not allow nesting between pockets at the Fermi energy ({it E}$_{rm F}$), which is in contrast to $A$Fe$_2$As$_2$-type parent compounds of the iron-based superconductors. Interestingly, we find that the hole bands are moved 300--400~meV below $E_{rm F}$ depending on the $A$ element. Moreover, the existence of nearly flat bands in the vicinity of $E_{rm F}$ are consistent with the large density of states at $E_{rm F}$. These results are important to understand the physical properties as well as the possibility of the emergence of superconductivity in related materials.
H. Pfau
,C. R. Rotundu
,J. C. Palmstrom
.
(2019)
.
"Detailed band structure of twinned and detwinned BaFe$_2$As$_2$ studied with angle-resolved photoemission spectroscopy"
.
Heike Pfau
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا