Do you want to publish a course? Click here

A Bayesian Cognition Approach to Improve Data Visualization

212   0   0.0 ( 0 )
 Added by Yea Seul Kim
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

People naturally bring their prior beliefs to bear on how they interpret the new information, yet few formal models exist for accounting for the influence of users prior beliefs in interactions with data presentations like visualizations. We demonstrate a Bayesian cognitive model for understanding how people interpret visualizations in light of prior beliefs and show how this model provides a guide for improving visualization evaluation. In a first study, we show how applying a Bayesian cognition model to a simple visualization scenario indicates that peoples judgments are consistent with a hypothesis that they are doing approximate Bayesian inference. In a second study, we evaluate how sensitive our observations of Bayesian behavior are to different techniques for eliciting people subjective distributions, and to different datasets. We find that people dont behave consistently with Bayesian predictions for large sample size datasets, and this difference cannot be explained by elicitation technique. In a final study, we show how normative Bayesian inference can be used as an evaluation framework for visualizations, including of uncertainty.



rate research

Read More

Data visualization should be accessible for all analysts with data, not just the few with technical expertise. Visualization recommender systems aim to lower the barrier to exploring basic visualizations by automatically generating results for analysts to search and select, rather than manually specify. Here, we demonstrate a novel machine learning-based approach to visualization recommendation that learns visualization design choices from a large corpus of datasets and associated visualizations. First, we identify five key design choices made by analysts while creating visualizations, such as selecting a visualization type and choosing to encode a column along the X- or Y-axis. We train models to predict these design choices using one million dataset-visualization pairs collected from a popular online visualization platform. Neural networks predict these design choices with high accuracy compared to baseline models. We report and interpret feature importances from one of these baseline models. To evaluate the generalizability and uncertainty of our approach, we benchmark with a crowdsourced test set, and show that the performance of our model is comparable to human performance when predicting consensus visualization type, and exceeds that of other ML-based systems.
Multivariate spatial data plays an important role in computational science and engineering simulations. The potential features and hidden relationships in multivariate data can assist scientists to gain an in-depth understanding of a scientific process, verify a hypothesis and further discover a new physical or chemical law. In this paper, we present a comprehensive survey of the state-of-the-art techniques for multivariate spatial data visualization. We first introduce the basic concept and characteristics of multivariate spatial data, and describe three main tasks in multivariate data visualization: feature classification, fusion visualization, and correlation analysis. Finally, we prospect potential research topics for multivariate data visualization according to the current research.
Inspired by the great success of machine learning (ML), researchers have applied ML techniques to visualizations to achieve a better design, development, and evaluation of visualizations. This branch of studies, known as ML4VIS, is gaining increasing research attention in recent years. To successfully adapt ML techniques for visualizations, a structured understanding of the integration of ML4VISis needed. In this paper, we systematically survey 88 ML4VIS studies, aiming to answer two motivating questions: what visualization processes can be assisted by ML? and how ML techniques can be used to solve visualization problems? This survey reveals seven main processes where the employment of ML techniques can benefit visualizations:Data Processing4VIS, Data-VIS Mapping, InsightCommunication, Style Imitation, VIS Interaction, VIS Reading, and User Profiling. The seven processes are related to existing visualization theoretical models in an ML4VIS pipeline, aiming to illuminate the role of ML-assisted visualization in general visualizations.Meanwhile, the seven processes are mapped into main learning tasks in ML to align the capabilities of ML with the needs in visualization. Current practices and future opportunities of ML4VIS are discussed in the context of the ML4VIS pipeline and the ML-VIS mapping. While more studies are still needed in the area of ML4VIS, we hope this paper can provide a stepping-stone for future exploration. A web-based interactive browser of this survey is available at https://ml4vis.github.io
Visualization recommendation or automatic visualization generation can significantly lower the barriers for general users to rapidly create effective data visualizations, especially for those users without a background in data visualizations. However, existing rule-based approaches require tedious manual specifications of visualization rules by visualization experts. Other machine learning-based approaches often work like black-box and are difficult to understand why a specific visualization is recommended, limiting the wider adoption of these approaches. This paper fills the gap by presenting KG4Vis, a knowledge graph (KG)-based approach for visualization recommendation. It does not require manual specifications of visualization rules and can also guarantee good explainability. Specifically, we propose a framework for building knowledge graphs, consisting of three types of entities (i.e., data features, data columns and visualization design choices) and the relations between them, to model the mapping rules between data and effective visualizations. A TransE-based embedding technique is employed to learn the embeddings of both entities and relations of the knowledge graph from existing dataset-visualization pairs. Such embeddings intrinsically model the desirable visualization rules. Then, given a new dataset, effective visualizations can be inferred from the knowledge graph with semantically meaningful rules. We conducted extensive evaluations to assess the proposed approach, including quantitative comparisons, case studies and expert interviews. The results demonstrate the effectiveness of our approach.
Data credibility is a crucial issue in mobile crowd sensing (MCS) and, more generally, people-centric Internet of Things (IoT). Prior work takes approaches such as incentive mechanism design and data mining to address this issue, while overlooking the power of crowds itself, which we exploit in this paper. In particular, we propose a cross validation approach which seeks a validating crowd to verify the data credibility of the original sensing crowd, and uses the verification result to reshape the original sensing dataset into a more credible posterior belief of the ground truth. Following this approach, we design a specific cross validation mechanism, which integrates four sampling techniques with a privacy-aware competency-adaptive push (PACAP) algorithm and is applicable to time-sensitive and quality-critical MCS applications. It does not require redesigning a new MCS system but rather functions as a lightweight plug-in, making it easier for practical adoption. Our results demonstrate that the proposed mechanism substantially improves data credibility in terms of both reinforcing obscure truths and scavenging hidden truths.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا