Do you want to publish a course? Click here

The Cholewinski-Fock space in the Slice Hyperholomorphic Setting

85   0   0.0 ( 0 )
 Added by Kamal Diki
 Publication date 2019
  fields
and research's language is English
 Authors Kamal Diki




Ask ChatGPT about the research

Inspired from the Cholewinski approach see [5], we investigate a family of Fock spaces in the quaternionic slice hyperholomorphic setting as well as some associated quaternionic linear operators. In a particular case, we reobtain the slice hyperholomorphic Fock space introduced and studied in [2].



rate research

Read More

A boundary Nevanlinna-Pick interpolation problem is posed and solved in the quaternionic setting. Given nonnegative real numbers $kappa_1, ldots, kappa_N$, quaternions $p_1, ldots, p_N$ all of modulus $1$, so that the $2$-spheres determined by each point do not intersect and $p_u eq 1$ for $u = 1,ldots, N$, and quaternions $s_1, ldots, s_N$, we wish to find a slice hyperholomorphic Schur function $s$ so that $$lim_{substack{rrightarrow 1 rin(0,1)}} s(r p_u) = s_uquad {rm for} quad u=1,ldots, N,$$ and $$lim_{substack{rrightarrow 1 rin(0,1)}}frac{1-s(rp_u)overline{s_u}}{1-r}lekappa_u,quad {rm for} quad u=1,ldots, N.$$ Our arguments relies on the theory of slice hyperholomorphic functions and reproducing kernel Hilbert spaces.
In this paper we prove a quaternionic positive real lemma as well as its generalized version, in case the associated kernel has negative squares for slice hyperholomorphic functions. We consider the case of functions with positive real part in the half space of quaternions with positive real part, as well as the case of (generalized) Schur functions in the open unit ball.
The main purpose of this paper is to prove some density results of polynomials in Fock spaces of slice regular functions. The spaces can be of two different kinds since they are equipped with different inner products and contain different functions. We treat both the cases, providing several results, some of them based on constructive methods which make use of the Taylor expansion and of the convolution polynomials. We also prove quantitative estimates in terms of higher order moduli of smoothness and in terms of the best approximation quantities.
It was known to von Neumann in the 1950s that the integer lattice $mathbb{Z}^2$ forms a uniqueness set for the Bargmann-Fock space. It was later demonstrated by Seip and Wallsten that a sequence of points $Gamma$ that is uniformly close to the integer lattice is still a uniqueness set. We show in this paper that the uniqueness sets for the Fock space are preserved under much more general perturbations.
The aim of this work is to generalize the ultraholomorphic extension theorems from V. Thilliez in the weight sequence setting and from the authors in the weight function setting (of Roumieu type) to a mixed framework. Such mixed results have already been known for ultradifferentiable classes and it seems natural that they have ultraholomorphic counterparts. In order to have control on the opening of the sectors in the Riemann surface of the logarithm for which the extension theorems are valid we are introducing new mixed growth indices which are generalizing the known ones for weight sequences and functions. As it turns out, for the validity of mixed extension results the so-called order of quasianalyticity (introduced by the second author for weight sequences) is becoming important.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا