Do you want to publish a course? Click here

DUNEuro -- A software toolbox for forward modeling in bioelectromagnetism

57   0   0.0 ( 0 )
 Added by Johannes Vorwerk
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Accurate and efficient source analysis in electro- and magnetoencephalography using sophisticated realistic head geometries requires advanced numerical approaches. This paper presents DUNEuro, a free and open source C++ software toolbox for forward modeling in bioelectromagnetism. Building upon the DUNE framework, it provides implementations of modern fitted and unfitted finite element methods to efficiently solve the forward problems in electro- and magnetoencephalography. The user can choose between a variety of different source models that are implemented. The softwares aim is to provide interfaces that are extendible and easy-to-use. In order to enable a closer integration into existing analysis pipelines, interfaces to Python and Matlab are provided. The practical use is demonstrated by a source analysis example of somatosensory evoked potentials using a realistic six compartment head model.



rate research

Read More

104 - Alberto Gomez 2021
This paper presents a Matlab toolbox to perform basic image processing and visualization tasks, particularly designed for medical image processing. The functionalities available are similar to basic functions found in other non-Matlab widely used libraries such as the Insight Toolkit (ITK). The toolbox is entirely written in native Matlab code, but is fast and flexible. Main use cases for the toolbox are illustrated here, including image input/output, pre-processing, filtering, image registration and visualisation. Both the code and sample data are made publicly available and open source.
The `equation-free toolbox empowers the computer-assisted analysis of complex, multiscale systems. Its aim is to enable you to immediately use microscopic simulators to perform macro-scale system level tasks and analysis, because micro-scale simulations are often the best available description of a system. The methodology bypasses the derivation of macroscopic evolution equations by computing the micro-scale simulator only over short bursts in time on small patches in space, with bursts and patches well-separated in time and space respectively. We introduce the suite of coded equation-free functions in an accessible way, link to more detailed descriptions, discuss their mathematical support, and introduce a novel and efficient algorithm for Projective Integration. Some facets of toolbox development of equation-free functions are then detailed. Download the toolbox functions (https://github.com/uoa1184615/EquationFreeGit) and use to empower efficient and accurate simulation in a wide range of your science and engineering problems.
The numerical solution of partial differential equations is at the heart of many grand challenges in supercomputing. Solvers based on high-order discontinuous Galerkin (DG) discretisation have been shown to scale on large supercomputers with excellent performance and efficiency, if the implementation exploits all levels of parallelism and is tailored to the specific architecture. However, every year new supercomputers emerge and the list of hardware-specific considerations grows, simultaneously with the list of desired features in a DG code. Thus we believe that a sustainable DG code needs an abstraction layer to implement the numerical scheme in a suitable language. We explore the possibility to abstract the numerical scheme as small tensor operations, describe them in a domain-specific language (DSL) resembling the Einstein notation, and to map them to existing code generators which generate small matrix matrix multiplication routines. The compiler for our DSL implements classic optimisations that are used for large tensor contractions, and we present novel optimisation techniques such as equivalent sparsity patterns and optimal index permutations for temporary tensors. Our application examples, which include the earthquake simulation software SeisSol, show that the generated kernels achieve over 50 % peak performance while the DSL considerably simplifies the implementation.
We analyze the time pattern of the activity of a serial killer, who during twelve years had murdered 53 people. The plot of the cumulative number of murders as a function of time is of Devils staircase type. The distribution of the intervals between murders (step length) follows a power law with the exponent of 1.4. We propose a model according to which the serial killer commits murders when neuronal excitation in his brain exceeds certain threshold. We model this neural activity as a branching process, which in turn is approximated by a random walk. As the distribution of the random walk return times is a power law with the exponent 1.5, the distribution of the inter-murder intervals is thus explained. We illustrate analytical results by numerical simulation. Time pattern activity data from two other serial killers further substantiate our analysis.
Tensors (also commonly seen as multi-linear operators or as multi-dimensional arrays) are ubiquitous in scientific computing and in data science, and so are the software efforts for tensor operations. Particularly in recent years, we have observed an explosion in libraries, compilers, packages, and toolboxes; unfortunately these efforts are very much scattered among the different scientific domains, and inevitably suffer from replication, suboptimal implementations, and in many cases, limited visibility. As a first step towards countering these inefficiencies, here we survey and loosely classify software packages related to tensor computations. Our aim is to assemble a comprehensive and up-to-date snapshot of the tensor software landscape, with the intention of helping both users and developers. Aware of the difficulties inherent in any multi-discipline survey, we very much welcome the readers help in amending and expanding our software list, which currently features 72 projects.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا