No Arabic abstract
In 2017 an estimated 3 billion people used polluting fuels and technologies as their primary cooking solution, with 3.8 million deaths annually attributed to household exposure to the resulting fine particulate matter air pollution. Currently, health burdens are calculated using aggregations of fuel types, e.g. solid fuels, as country-level estimates of the use of specific fuel types, e.g. wood and charcoal, are unavailable. To expand the knowledge base about impacts of household air pollution on health, we develop and implement a Bayesian hierarchical model, based on Generalized Dirichlet Multinomial distributions, that jointly estimates non-linear trends in the use of eight key fuel types, overcoming several data-specific challenges including missing or combined fuel use values. We assess model fit using within-sample predictive analysis and an out-of-sample prediction experiment to evaluate the models forecasting performance.
Segmenting population into subgroups with higher intergroup, but lower intragroup, heterogeneity can be useful in enhancing the effectiveness of many socio-economic policy interventions; yet it has received little attention in promoting clean cooking. Here, we use PERMANOVA, a distance-based multivariate analysis, to identify the factor that captures the highest intergroup heterogeneity in the choice of cooking fuels. Applying this approach to the post-earthquake data on 747,137 households from Nepal, we find that ethnicity explains 39.12% of variation in fuel choice, followed by income (26.30%), education (12.62%), and location (4.05%). This finding indicates that ethnicity, rather than income or other factors, as a basis of policy interventions may be more effective in promoting clean cooking. We also find that, among the ethnic groups in Nepal, the most marginalized Chepang/Thami community exhibits the lowest intragroup diversity (Shannon index = 0.101) while Newars the highest (0.667). This information on intra-ethnic diversity in fuel choice can have important policy implications for reducing ethnic gap in clean cooking.
We propose a hierarchical Bayesian model to estimate the proportional contribution of source populations to a newly founded colony. Samples are derived from the first generation offspring in the colony, but mating may occur preferentially among migrants from the same source population. Genotypes of the newly founded colony and source populations are used to estimate the mixture proportions, and the mixture proportions are related to environmental and demographic factors that might affect the colonizing process. We estimate an assortative mating coefficient, mixture proportions, and regression relationships between environmental factors and the mixture proportions in a single hierarchical model. The first-stage likelihood for genotypes in the newly founded colony is a mixture multinomial distribution reflecting the colonizing process. The environmental and demographic data are incorporated into the model through a hierarchical prior structure. A simulation study is conducted to investigate the performance of the model by using different levels of population divergence and number of genetic markers included in the analysis. We use Markov chain Monte Carlo (MCMC) simulation to conduct inference for the posterior distributions of model parameters. We apply the model to a data set derived from grey seals in the Orkney Islands, Scotland. We compare our model with a similar model previously used to analyze these data. The results from both the simulation and application to real data indicate that our model provides better estimates for the covariate effects.
Air pollution is a major risk factor for global health, with both ambient and household air pollution contributing substantial components of the overall global disease burden. One of the key drivers of adverse health effects is fine particulate matter ambient pollution (PM$_{2.5}$) to which an estimated 3 million deaths can be attributed annually. The primary source of information for estimating exposures has been measurements from ground monitoring networks but, although coverage is increasing, there remain regions in which monitoring is limited. Ground monitoring data therefore needs to be supplemented with information from other sources, such as satellite retrievals of aerosol optical depth and chemical transport models. A hierarchical modelling approach for integrating data from multiple sources is proposed allowing spatially-varying relationships between ground measurements and other factors that estimate air quality. Set within a Bayesian framework, the resulting Data Integration Model for Air Quality (DIMAQ) is used to estimate exposures, together with associated measures of uncertainty, on a high resolution grid covering the entire world. Bayesian analysis on this scale can be computationally challenging and here approximate Bayesian inference is performed using Integrated Nested Laplace Approximations. Model selection and assessment is performed by cross-validation with the final model offering substantial increases in predictive accuracy, particularly in regions where there is sparse ground monitoring, when compared to current approaches: root mean square error (RMSE) reduced from 17.1 to 10.7, and population weighted RMSE from 23.1 to 12.1 $mu$gm$^{-3}$. Based on summaries of the posterior distributions for each grid cell, it is estimated that 92% of the worlds population reside in areas exceeding the World Health Organizations Air Quality Guidelines.
Statistical models used to estimate the spatio-temporal pattern in disease risk from areal unit data represent the risk surface for each time period with known covariates and a set of spatially smooth random effects. The latter act as a proxy for unmeasured spatial confounding, whose spatial structure is often characterised by a spatially smooth evolution between some pairs of adjacent areal units while other pairs exhibit large step changes. This spatial heterogeneity is not consistent with existing global smoothing models, in which partial correlation exists between all pairs of adjacent spatial random effects. Therefore we propose a novel space-time disease model with an adaptive spatial smoothing specification that can identify step changes. The model is motivated by a new study of respiratory and circulatory disease risk across the set of Local Authorities in England, and is rigorously tested by simulation to assess its efficacy. Results from the England study show that the two diseases have similar spatial patterns in risk, and exhibit a number of common step changes in the unmeasured component of risk between neighbouring local authorities.
Voluntary medical male circumcision (VMMC) reduces the risk of male HIV acquisition by 60%. Programmes to provide male circumcision (MC) to prevent HIV infection have been introduced in sub-Saharan African countries with high HIV burden. While large-scale provision of MMC is recent, traditional MC has long been conducted as part of male coming-of-age practices. How and at what age traditional MC occurs varies by ethnic groups within countries. Accurate estimates of MC coverage by age and type of circumcision (traditional or medical) over time at sub-national levels are essential for planning and delivering VMMCs to meet targets and evaluating their impacts on HIV incidence. In this paper, we developed a Bayesian competing risks time-to-event model to produce region-age-time-type specific probabilities and coverage of MC with probabilistic uncertainty. The model jointly synthesises data from household surveys and health system data on the number of VMMCs conducted. We demonstrated the model using data from five household surveys and VMMC programme data to produce estimates of MC coverage for 52 districts in South Africa between 2008 and 2019. Nationally in 2008, 24.1% (CI: 23.4-24.8%) of men aged 15-49 were traditionally circumcised and 19.4% (CI: 18.9-20.0%) were medically circumcised. Between 2008 and 2019, five million VMMCs were conducted, and MC coverage among men aged 15-49 increased to 64.0% (CI: 63.2-64.9%) and medical MC coverage to 42% (CI: 41.3-43.0%). MC coverage varied widely across districts, ranging from 13.4-86.3%. The average age of traditional MC ranged between 13 to 19 years, depending on local cultural practices.