In this paper, we study traveling wave solutions of the chemotaxis systems begin{equation} begin{cases} u_{t}=Delta u -chi_1 abla( u abla v_1)+chi_2 abla(u abla v_2 )+ u(a -b u), qquad xinmathbb{R} taupartial_tv_1=(Delta- lambda_1 I)v_1+ mu_1 u, qquad xinmathbb{R}, taupartial v_2=(Delta- lambda_2 I)v_2+ mu_2 u, qquad xinmathbb{R}, end{cases} (0.1) end{equation} where $tau>0,chi_{i}> 0,lambda_i> 0, mu_i>0$ ($i=1,2$) and $ a>0, b> 0$ are constants, and $N$ is a positive integer. Under some appropriate conditions on the parameters, we show that there exist two positive constant $ 0<c^{*}(tau,chi_1,mu_1,lambda_1,chi_2,mu_2,lambda_2)<c^{**}(tau,chi_1,mu_1,lambda_1,chi_2,mu_2,lambda_2)$ such that for every $c^{*}(tau,chi_1,mu_1,lambda_1,chi_2,mu_2,lambda_2)leq c<c^{**}(tau,chi_1,mu_1,lambda_1,chi_2,mu_2,lambda_2)$, $(0.1)$ has a traveling wave solution $(u,v_1,v_2)(x,t)=(U,V_1,V_2)(x-ct)$ connecting $(frac{a}{b},frac{amu_1}{blambda_1},frac{amu_2}{blambda_2})$ and $(0,0,0)$ satisfying $$ lim_{zto infty}frac{U(z)}{e^{-mu z}}=1, $$ where $muin (0,sqrt a)$ is such that $c=c_mu:=mu+frac{a}{mu}$. Moreover, $$ lim_{(chi_1,chi_2)to (0^+,0^+))}c^{**}(tau,chi_1,mu_1,lambda_1,chi_2,mu_2,lambda_2)=infty$$ and $$lim_{(chi_1,chi_2)to (0^+,0^+))}c^{*}(tau,chi_1,mu_1,lambda_1,chi_2,mu_2,lambda_2)= c_{tilde{mu}^*}, $$ where $tilde{mu}^*={min{sqrt{a}, sqrt{frac{lambda_1+tau a}{(1-tau)_{+}}},sqrt{frac{lambda_2+tau a}{(1-tau)_{+}}}}}$. We also show that $(0.1)$ has no traveling wave solution connecting $(frac{a}{b},frac{amu_1}{blambda_1},frac{amu_2}{blambda_2})$ and $(0,0,0)$ with speed $c<2sqrt{a}$.
In this paper, we consider the initial Neumann boundary value problem for a degenerate kinetic model of Keller--Segel type. The system features a signal-dependent decreasing motility function that vanishes asymptotically, i.e., degeneracies may take place as the concentration of signals tends to infinity. In the present work, we are interested in the boundedness of classical solutions when the motility function satisfies certain decay rate assumptions. Roughly speaking, in the two-dimensional setting, we prove that classical solution is globally bounded if the motility function decreases slower than an exponential speed at high signal concentrations. In higher dimensions, boundedness is obtained when the motility decreases at certain algebraical speed. The proof is based on the comparison methods developed in our previous work cite{FJ19a,FJ19b} together with a modified Alikakos--Moser type iteration. Besides, new estimations involving certain weighted energies are also constructed to establish the boundedness.