Do you want to publish a course? Click here

Predicted MOND velocity dispersions for a catalog of ultra-diffuse galaxies in group environments

81   0   0.0 ( 0 )
 Added by Oliver M\\\"uller
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The possibility that ultra-diffuse galaxies lacking dark matter has recently stimulated interest to check the validity of Modified Newton Dynamics (MOND) predictions on the scale of such galaxies. It has been shown that the External Field Effect (EFE) induced by the close-by galaxy can suppress the velocity dispersion of these systems, so that they appear almost dark matter free in the Newtonian context. Here, following up on this, we are making a priori predictions for the velocity dispersion of 22 ultra-diffuse galaxies in the nearby Universe. This sample can be used to test MOND and the EFE with future follow-up measurements. We construct a catalog of nearby ultra-diffuse galaxies in galaxy group environments, and set upper and lower limits for the possible velocity dispersion allowed in MOND, taking into account possible variations in the mass-to-light ratio of the dwarf and in the distance to the galaxy group. The prediction for the velocity dispersion is made as a function of the three dimensional separation of the dwarf to its host. In 17 out of 22 cases, the EFE plays a crucial role in the prediction.



rate research

Read More

133 - Dennis Zaritsky 2016
We describe how to estimate the velocity dispersions of ultra diffuse galaxies, UDGs, using a previously defined galaxy scaling relationship. The method is accurate for the two UDGs with spectroscopically measured dispersions, as well as for ultra compact galaxies, ultra faint galaxies, and stellar systems with little or no dark matter. This universality means that the relationship can be applied without further knowledge or prejudice regarding the structure of a galaxy. We then estimate the velocity dispersions of UDGs drawn from two published samples and examine the distribution of total masses. We find, in agreement with the previous studies of two individual UDGs, that these systems are dark matter dominated systems, and that they span a range of at least $10^{10} < M_{200}/M_odot < 10^{12} $. These galaxies are not, as an entire class, either all dwarfs or all failed $L_*$ galaxies. Estimates of the velocity dispersions can also help identify interesting subsets of UDGs, such as those that are likely to have the largest mass-to-light ratios, for subsequent spectroscopic study.
124 - Adi Nusser 2019
A scenario for achieving a low velocity dispersion for the galaxy [KKS 2000]04 (aka NGC 1052-DF2) and similar galaxies is presented. A progenitor halo corresponding to a $z=0$ halo of mass $sim 5times 10^{10}; textrm{M}_odot$ and a low concentration parameter (but consistent with cosmological simulations) infalls onto a Milky Way-size host at early times. {Substantial removal of cold gas} from the inner regions by supernova feedback and ram pressure, assisted by tidal stripping of the dark matter in the outer regions, leads to a substantial reduction of the velocity dispersion of stars within one effective radius. In this framework, the observed stellar content of [KKS 2000]04 is associated with a progenitor mass close to that inferred from the global stellar-to-halo-mass ratio. As far as the implications of kinematics are concerned, even if at a $sim 20 $ Mpc distance, it is argued that [KKS 2000]04 is no more peculiar than numerous early type galaxies with seemingly little total dark-matter content.
(Abridged) Dynamical friction can be used to distinguish Newtonian gravity and modified Newtonian dynamics (MOND) because it works differently in these frameworks. This concept, however, has yet to be explored very much with MOND. Previous simulations showed weaker dynamical friction during major mergers for MOND than for Newtonian gravity with dark matter. Analytic arguments suggest the opposite for minor mergers. In this work, we verify the analytic predictions for MOND by high-resolution $N$-body simulations of globular clusters (GCs) moving in isolated ultra-diffuse galaxies (UDGs). We test the MOND analog of the Chandrasekhar formula for the dynamical friction proposed by Sanchez-Salcedo on a single GC. We also explore whether MOND allows GC systems of isolated UDGs to survive without sinking into nuclear star clusters. The simulations are run using the adaptive-mesh-refinement code Phantom of Ramses. The mass resolution is $20,M_odot$ and the spatial resolution $50,$pc. The GCs are modeled as point masses. Simulations including a single GC reveal that, as long as the apocenter of the GC is over about 0.5 effective radii, the Sanchez-Salcedo formula works excellently, with an effective Coulomb logarithm increasing with orbital circularity. Once the GC reaches the central kiloparsec, its sinking virtually stops, likely because of the core stalling mechanism. In simulations with multiple GCs, many of them sink toward the center, but the core stalling effect seems to prevent them from forming a nuclear star cluster. The GC system ends up with a lower velocity dispersion than the stars of the galaxy. By scaling the simulations, we extend these results to most UDG parameters, as long as these UDGs are not external-field dominated.
151 - Xufen Wu , Pavel Kroupa 2017
We study the evolution of star clusters located in the outer regions of a galaxy undergoing a sudden mass loss through gas expulsion in the framework of Milgromian dynamics (MOND) by means of N-body simulations. We find that, to leave a bound star cluster, the star formation efficiency (SFE) of an embedded cluster dominated by deep MOND gravity can be reduced down to $2.5%$. For a given SFE, the star clusters that survive in MOND can bind a larger fraction of mass compared to the Newtonian dynamics. Moreover, the more diffuse the embedded cluster is, the less substantial the size expansion of the final star cluster is. The density profiles of a surviving star cluster are more cuspy in the centre for more massive embedded clusters, and the central density profiles are flatter for less massive embedded clusters or for lower SFE. This work may help to understand the low concentration and extension of the distant low-density globular clusters (GCs) and ultra-faint and diffuse satellite galaxies around the Milky Way.
We report on the first resolved HI observations of two blue ultra-diffuse galaxies (UDGs)using the Giant Metrewave Radio Telescope (GMRT). These observations add to the sofar limited number of UDGs with resolved HI data. The targets are from contrasting non-cluster environments: UDG-B1 is projected in the outskirts of Hickson Compact Group 25 and Secco-dI-2 (SdI-2) is an isolated UDG. These UDGs also have contrasting effective radii with Re of 3.7 kpc (similar to the Milky Way) and 1.3 kpc respectively. SdI-2 has an unusually large MHI/M* ratio =28.9, confirming a previous single dish HI observation. Both galaxies display HI morphological and kinematic signatures consistent with a recent tidal interaction, which is also supported by observations from other wavelengths, including optical spectroscopy. Within the limits of the observations resolution, our analysis indicates that SdI-2 is dark matter-dominated within its HI radius and this is also likely to be the case for UDG-B1. Our study highlights the importance of high spatial and spectral resolution HI observations for the study of the dark matter properties of UDGs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا