Do you want to publish a course? Click here

Electrically Tunable Wafer-Sized Three-Dimensional Topological Insulator Thin Films Grown by Magnetron Sputtering

116   0   0.0 ( 0 )
 Added by Jiao Teng
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Three-dimensional (3D) topological insulators (TIs) are candidate materials for various electronic and spintronic devices due to their strong spin-orbit coupling and unique surface electronic structure. Rapid, low-cost preparation of large-area TI thin films compatible with conventional semiconductor technology is key to the practical applications of TIs. Here, we show that wafer-sized Bi2Te3 family TI and magnetic TI films with decent quality and well-controlled composition and properties can be prepared on amorphous SiO2/Si substrates by magnetron cosputtering. The SiO2/Si substrates enable us to electrically tune (Bi1-xSbx)2Te3 and Cr-doped (Bi1-xSbx)2Te3 TI films between p-type and n-type behavior and thus study the phenomena associated with topological surface states, such as the quantum anomalous Hall effect (QAHE). This work significantly facilitates the fabrication of TI-based devices for electronic and spintronic applications.



rate research

Read More

In this work, amorphous thin films in Mg-Si-O-N system were prepared in order to investigate the dependence of optical and mechanical properties on Mg composition. Reactive RF magnetron co-sputtering from magnesium and silicon targets were used for the deposition of Mg-Si-O-N thin films. Films were deposited on float glass, silica wafers and sapphire substrates in an Ar, N2 and O2 gas mixture. X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, spectroscopic ellipsometry, and nanoindentation were employed to characterize the composition, surface morphology, and properties of the films.
Electrical field control of the carrier density of topological insulators (TI) has greatly expanded the possible practical use of these materials. However, the combination of low temperature local probe studies and a gate tunable TI device remains challenging. We have overcome this limitation by scanning tunneling microscopy and spectroscopy measurements on in-situ molecular beam epitaxy growth of Bi2Se3 films on SrTiO3 substrates with pre-patterned electrodes. Using this gating method, we are able to shift the Fermi level of the top surface states by 250 meV on a 3 nm thick Bi2Se3 device. We report field effect studies of the surface state dispersion, band gap, and electronic structure at the Fermi level.
We fabricated superconducting MgB2 thin films on (001) MgO substrates. The samples were prepared by magnetron rf and dc co-sputtering on heated substrates. They were annealed ex-situ for one hour at temperatures between 450{deg}C and 750{deg}C. We will show that the substrate temperature during the sputtering process and the post annealing temperatures play a crucial role in forming MgB2 superconducting thin films. We achieved a critical onset temperature of 27.1K for a film thickness of 30nm. The crystal structures were measured by x-ray diffraction.
In this work, we studied phase formation, structural and magnetic properties of iron-nitride (Fe-N) thin films deposited using high power impulse magnetron sputtering (HiPIMS) and direct current magnetron sputtering (dc-MS). The nitrogen partial pressure during deposition was systematically varied both in HiPIMS and dc-MS. Resulting Fe-N films were characterized for their microstructure, magnetic properties and nitrogen concentration. We found that HiPIMS deposited Fe-N films show a globular nanocrystalline microstructure and improved soft magnetic properties. In addition, it was found that the nitrogen reactivity impedes in HiPIMS as compared to dc-MS. Obtained results can be understood in terms of distinct plasma properties of HiPIMS.
In the prospect of understanding the photoluminescence mechanisms of AlN films doped with erbium and targeting photonic applications we have synthesized non doped and Er-doped AlN films with different crystallized nanostructures by using PVD magnetron sputtering. Their crystalline morphology and their visible photoluminescence properties were precisely measured.Due to the weak cross-section absorption of rare earths like erbium, it is necessary to obtain an efficient energy transfer mechanism between the host matrix and the rare earth to obtain high luminescence efficiency. Our strategy is then to elaborate some nanostructures that could introduce additional intermediate electronic levels within the gap thanks to the presence of structural defects (point defects, grain boundaries{ldots}) and could lead to energy transfer from the AlN matrix to the rare earth.Doped and non-doped AlN films were prepared by radio frequency magnetron sputtering by using different experimental conditions that will be detailed. It will notably be shown how a negative polarization of samples during deposition allows obtaining crystalline morphologies ranging from the classical columnar structure to a highly disordered polycrystalline structure with grains of several nanometers (nearly amorphous). The nanostructures of the films could be categorized in three types: 1) type 1 was nanocolumnar (width of column ~ 15 nm), 2) type 2 was made of short columns (width of column ~ 10 nm) and 3) the last type was made of equiaxed nanocrystallites (size of grains ~3-4 nm).High-resolution photoluminescence spectroscopy was performed to characterize their optical behaviour. The samples were excited by the laser wavelengths at 458, 488 or 514 nm. A broad photoluminescence band was observed centred around 520 nm in columnar samples. In the same energy range, the highly resolved spectra also showed several sharp emission peaks. This fine structure could be attributed to erbium transitions. This fine structure tended to disappear going from type 1 to type 3 samples. Indeed, the relative intensity of the peaks decreased and their full width at half maximum increased. This change could be related to the density of defects that increased when the size of the grains decreased. The photoluminescence properties of the films in the visible range will be discussed in relation with their structure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا