Do you want to publish a course? Click here

J-PAS: forecasts on interacting dark energy from baryon acoustic oscillations and redshift-space distortions

112   0   0.0 ( 0 )
 Added by Andr\\'e Costa
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We estimate the constraining power of J-PAS for parameters of an interacting dark energy cosmology. The survey is expected to map several millions of luminous red galaxies, emission line galaxies and quasars in an area of thousands of square degrees in the northern sky with precise photometric redshift measurements. Forecasts for the DESI and Euclid surveys are also evaluated and compared to J-PAS. With the Fisher matrix approach, we find that J-PAS can place constraints on the interaction parameter comparable to those from DESI, with an absolute uncertainty of about $0.02$, when the interaction term is proportional to the dark matter energy density, and almost as good, of about $0.01$, when the interaction is proportional to the dark energy density. For the equation of state of dark energy, the constraints from J-PAS are slightly better in the two cases (uncertainties $0.04$ - $0.05$ against $0.05$ - $0.07$ around the fiducial value $-1$). Both surveys stay behind Euclid but follow it closely, imposing comparable constraints in all specific cases considered.



rate research

Read More

The next generation of galaxy surveys will allow us to test some fundamental aspects of the standard cosmological model, including the assumption of a minimal coupling between the components of the dark sector. In this paper, we present the Javalambre Physics of the Accelerated Universe Astrophysical Survey (J-PAS) forecasts on a class of unified models where cold dark matter interacts with a vacuum energy, considering future observations of baryon acoustic oscillations, redshift-space distortions, and the matter power spectrum. After providing a general framework to study the background and linear perturbations, we focus on a concrete interacting model without momentum exchange by taking into account the contribution of baryons. We compare the J-PAS results with those expected for DESI and Euclid surveys and show that J-PAS is competitive to them, especially at low redshifts. Indeed, the predicted errors for the interaction parameter, which measures the departure from a $Lambda$CDM model, can be comparable to the actual errors derived from the current data of cosmic microwave background temperature anisotropies.
The next generation of galaxy surveys will allow us to test one of the most fundamental assumptions of the standard cosmology, i.e., that gravity is governed by the general theory of relativity (GR). In this paper we investigate the ability of the Javalambre Physics of the Accelerating Universe Astrophysical Survey (J-PAS) to constrain GR and its extensions. Based on the J-PAS information on clustering and gravitational lensing, we perform a Fisher matrix forecast on the effective Newton constant, $mu$, and the gravitational slip parameter, $eta$, whose deviations from unity would indicate a breakdown of GR. Similar analysis is also performed for the DESI and Euclid surveys and compared to J-PAS with two configurations providing different areas, namely an initial expectation with 4000 $mathrm{deg}^2$ and the future best case scenario with 8500 $mathrm{deg}^2$. We show that J-PAS will be able to measure the parameters $mu$ and $eta$ at a sensitivity of $2% - 7%$, and will provide the best constraints in the interval $z = 0.3 - 0.6$, thanks to the large number of ELGs detectable in that redshift range. We also discuss the constraining power of J-PAS for dark energy models with a time-dependent equation-of-state parameter of the type $w(a)=w_0+w_a(1-a)$, obtaining $Delta w_0=0.058$ and $Delta w_a=0.24$ for the absolute errors of the dark energy parameters.
We consider a cosmological model where dark matter and dark energy feature a coupling that only affects their momentum transfer in the corresponding Euler equations. We perform a fit to cosmological observables and confirm previous findings within these scenarios that favour the presence of a coupling at more than $3sigma$. This improvement is driven by the Sunyaev-Zeldovich data. We subsequently perform a forecast for future J-PAS data and find that clustering measurements will permit to clearly discern the presence of an interaction within a few percent level with the uncoupled case at more than $10sigma$ when the complete survey, covering $8500$ sq. deg., is considered. We found that the inclusion of weak lensing measurements will not help to further constrain the coupling parameter. For completeness, we compare to forecasts for DESI and Euclid, which provide similar discriminating power.
Interacting dark energy models have been proposed as attractive alternatives to $Lambda$CDM. Forthcoming Stage-IV galaxy clustering surveys will constrain these models, but they require accurate modelling of the galaxy power spectrum multipoles on mildly non-linear scales. In this work we consider a dark scattering model with a simple 1-parameter extension to $w$CDM - adding only $A$, which describes a pure momentum exchange between dark energy and dark matter. We then provide a comprehensive comparison of three approaches of modeling non-linearities, while including the effects of this dark sector coupling. We base our modeling of non-linearities on the two most popular perturbation theory approaches: TNS and EFTofLSS. To test the validity and precision of the modelling, we perform an MCMC analysis using simulated data corresponding to a $Lambda$CDM fiducial cosmology and Stage-IV surveys specifications in two redshift bins, $z=0.5$ and $z=1$. We find the most complex EFTofLSS-based model studied to be better suited at both, describing the mock data up to smaller scales, and extracting the most information. Using this model, we forecast uncertainties on the dark energy equation of state, $w$, and on the interaction parameter, $A$, finding $sigma_w=0.06$ and $sigma_A=1.1$ b/GeV for the analysis at $z=0.5$ and $sigma_w=0.06$ and $sigma_A=2.0$ b/GeV for the analysis at $z=1$. In addition, we show that a false detection of exotic dark energy up to 3$sigma$ would occur should the non-linear modelling be incorrect, demonstrating the importance of the validation stage for accurate interpretation of measurements.
We present measurements of the baryon acoustic peak at redshifts z = 0.44, 0.6 and 0.73 in the galaxy correlation function of the final dataset of the WiggleZ Dark Energy Survey. We combine our correlation function with lower-redshift measurements from the 6-degree Field Galaxy Survey and Sloan Digital Sky Survey, producing a stacked survey correlation function in which the statistical significance of the detection of the baryon acoustic peak is 4.9-sigma relative to a zero-baryon model with no peak. We fit cosmological models to this combined baryon acoustic oscillation (BAO) dataset comprising six distance-redshift data points, and compare the results to similar fits to the latest compilation of supernovae (SNe) and Cosmic Microwave Background (CMB) data. The BAO and SNe datasets produce consistent measurements of the equation-of-state w of dark energy, when separately combined with the CMB, providing a powerful check for systematic errors in either of these distance probes. Combining all datasets we determine w = -1.03 +/- 0.08 for a flat Universe, consistent with a cosmological constant model. Assuming dark energy is a cosmological constant and varying the spatial curvature, we find Omega_k = -0.004 +/- 0.006.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا