Do you want to publish a course? Click here

A C-DAG task model for scheduling complex real-time tasks on heterogeneous platforms: preemption matters

70   0   0.0 ( 0 )
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Recent commercial hardware platforms for embedded real-time systems feature heterogeneous processing units and computing accelerators on the same System-on-Chip. When designing complex real-time application for such architectures, the designer needs to make a number of difficult choices: on which processor should a certain task be implemented? Should a component be implemented in parallel or sequentially? These choices may have a great impact on feasibility, as the difference in the processor internal architectures impact on the tasks execution time and preemption cost. To help the designer explore the wide space of design choices and tune the scheduling parameters, in this paper we propose a novel real-time application model, called C-DAG, specifically conceived for heterogeneous platforms. A C-DAG allows to specify alternative implementations of the same component of an application for different processing engines to be selected off-line, as well as conditional branches to model if-then-else statements to be selected at run-time. We also propose a schedulability analysis for the C-DAG model and a heuristic allocation algorithm so that all deadlines are respected. Our analysis takes into account the cost of preempting a task, which can be non-negligible on certain processors. We demonstrate the effectiveness of our approach on a large set of synthetic experiments by comparing with state of the art algorithms in the literature.



rate research

Read More

Real-time scheduling and locking protocols are fundamental facilities to construct time-critical systems. For parallel real-time tasks, predictable locking protocols are required when concurrent sub-jobs mutually exclusive access to shared resources. This paper for the first time studies the distributed synchronization framework of parallel real-time tasks, where both tasks and global resources are partitioned to designated processors, and requests to each global resource are conducted on the processor on which the resource is partitioned. We extend the Distributed Priority Ceiling Protocol (DPCP) for parallel tasks under federated scheduling, with which we proved that a request can be blocked by at most one lower-priority request. We develop task and resource partitioning heuristics and propose analysis techniques to safely bound the task response times. Numerical evaluation (with heavy tasks on 8-, 16-, and 32-core processors) indicates that the proposed methods improve the schedulability significantly compared to the state-of-the-art locking protocols under federated scheduling.
A model has been proposed in [Baruah et al., in Proceedings of the IEEE Real-Time Systems Symposium 2012] for representing recurrent precedence-constrained tasks to be executed on multiprocessor platforms, where each recurrent task is modeled by a directed acyclic graph (DAG), a period, and a relative deadline. Each vertex of the DAG represents a sequential job, while the edges of the DAG represent precedence constraints between these jobs. All the jobs of the DAG are released simultaneously and have to be completed within some specified relative deadline. The task may release jobs in this manner an unbounded number of times, with successive releases occurring at least the specified period apart. The feasibility problem is to determine whether such a recurrent task can be scheduled to always meet all deadlines on a specified number of dedicated processors. The case of a single task has been considered in [Baruah et al., 2012]. The main contribution of this paper is to consider the case of multiple tasks. We show that EDF has a speedup bound of 2-1/m, where m is the number of processors. Moreover, we present polynomial and pseudopolynomial schedulability tests, of differing effectiveness, for determining whether a set of sporadic DAG tasks can be scheduled by EDF to meet all deadlines on a specified number of processors.
This paper presents a new strategy for scheduling soft real-time tasks on multiple identical cores. The proposed approach is based on partitioned CPU reservations and it uses a reclaiming mechanism to reduce the number of missed deadlines. We introduce the possibility for a task to temporarily migrate to another, less charged, CPU when it has exhausted the reserved bandwidth on its allocated CPU. In addition, we propose a simple load balancing method to decrease the number of deadlines missed by the tasks. The proposed algorithm has been evaluated through simulations, showing its effectiveness (compared to other multi-core reclaiming approaches) and comparing the performance of different partitioning heuristics (Best Fit, Worst Fit and First Fit).
When integrating hard, soft and non-real-time tasks in general purpose operating systems, it is necessary to provide temporal isolation so that the timing properties of one task do not depend on the behaviour of the others. However, strict budget enforcement can lead to inefficient use of the computational resources in the presence of tasks with variable workload. Many resource reclaiming algorithms have been proposed in the literature for single processor scheduling, but not enough work exists for global scheduling in multiprocessor systems. In this report, we propose two reclaiming algorithms for multiprocessor global scheduling and we prove their correctness.
Directed Acyclic Graph (DAG) scheduling in a heterogeneous environment is aimed at assigning the on-the-fly jobs to a cluster of heterogeneous computing executors in order to minimize the makespan while meeting all requirements of scheduling. The problem gets more attention than ever since the rapid development of heterogeneous cloud computing. A little reduction of makespan of DAG scheduling could both bring huge profits to the service providers and increase the level of service of users. Although DAG scheduling plays an important role in cloud computing industries, existing solutions still have huge room for improvement, especially in making use of topological dependencies between jobs. In this paper, we propose a task-duplication based learning algorithm, called textit{Lachesis}, for the distributed DAG scheduling problem. In our approach, it first perceives the topological dependencies between jobs using a specially designed graph convolutional network (GCN) to select the most likely task to be executed. Then the task is assigned to a specific executor with the consideration of duplicating all its precedent tasks according to a sophisticated heuristic method. We have conducted extensive experiments over standard workload data to evaluate our solution. The experimental results suggest that the proposed algorithm can achieve at most 26.7% reduction of makespan and 35.2% improvement of speedup ratio over seven strong baseline algorithms, including state-of-the-art heuristics methods and a variety of deep reinforcement learning based algorithms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا